Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 54(24): 16097-16107, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33226230

ABSTRACT

Dry anaerobic digestion (AD) of organic municipal solid waste (MSW) followed by composting of the residual digestate is a waste diversion strategy that generates biogas and soil amendment products. The AD-composting process avoids methane (CH4) emissions from landfilling, but emissions of other greenhouse gases, odorous/toxic species, and reactive compounds can affect net climate and air quality impacts. In situ measurements of key sources at two large-scale industrial facilities in California were conducted to quantify pollutant emission rates across the AD-composting process. These measurements established a strong relationship between flared biogas ammonia (NH3) content and emitted nitrogen oxides (NOx), indicating that fuel NOx formation is significant and dominates over the thermal or prompt NOx pathways when biogas NH3 concentration exceeds ∼200 ppm. Composting is the largest source of CH4, carbon dioxide (CO2), nitrous oxide (N2O), and carbon monoxide (CO) emissions (∼60-70%), and dominate NH3, hydrogen sulfide (H2S), and volatile organic compounds (VOC) emissions (>90%). The high CH4 contribution to CO2-equivalent emissions demonstrates that composting can be an important CH4 source, which could be reduced with improved aeration. Controlling greenhouse gas and toxic/odorous emissions from composting offers the greatest mitigation opportunities for reducing the climate and air quality impacts of the AD-composting process.


Subject(s)
Air Pollutants , Composting , Greenhouse Gases , Air Pollutants/analysis , Anaerobiosis , Carbon Dioxide/analysis , Greenhouse Effect , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Solid Waste
2.
Environ Health Perspect ; 120(12): 1671-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23008272

ABSTRACT

BACKGROUND: Associations of higher indoor carbon dioxide (CO2) concentrations with impaired work performance, increased health symptoms, and poorer perceived air quality have been attributed to correlation of indoor CO2 with concentrations of other indoor air pollutants that are also influenced by rates of outdoor-air ventilation. OBJECTIVES: We assessed direct effects of increased CO2, within the range of indoor concentrations, on decision making. METHODS: Twenty-two participants were exposed to CO2 at 600, 1,000, and 2,500 ppm in an office-like chamber, in six groups. Each group was exposed to these conditions in three 2.5-hr sessions, all on 1 day, with exposure order balanced across groups. At 600 ppm, CO2 came from outdoor air and participants' respiration. Higher concentrations were achieved by injecting ultrapure CO2. Ventilation rate and temperature were constant. Under each condition, participants completed a computer-based test of decision-making performance as well as questionnaires on health symptoms and perceived air quality. Participants and the person administering the decision-making test were blinded to CO2 level. Data were analyzed with analysis of variance models. RESULTS: Relative to 600 ppm, at 1,000 ppm CO2, moderate and statistically significant decrements occurred in six of nine scales of decision-making performance. At 2,500 ppm, large and statistically significant reductions occurred in seven scales of decision-making performance (raw score ratios, 0.06-0.56), but performance on the focused activity scale increased. CONCLUSIONS: Direct adverse effects of CO2 on human performance may be economically important and may limit energy-saving reductions in outdoor air ventilation per person in buildings. Confirmation of these findings is needed.


Subject(s)
Air Pollutants/adverse effects , Air Pollution, Indoor/adverse effects , Carbon Dioxide/adverse effects , Decision Making/drug effects , Environmental Exposure , Adolescent , Adult , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Analysis of Variance , Carbon Dioxide/analysis , Dose-Response Relationship, Drug , Environmental Monitoring , Female , Humans , Male , Surveys and Questionnaires , Ventilation , Young Adult
3.
Environ Sci Technol ; 39(9): 3203-14, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15926571

ABSTRACT

Sorption rate parameters were determined for three organophosphorus (OP) compounds [dimethyl methylphosphonate (DMMP), diethyl ethylphosphonate (DEEP), and triethyl phosphate (TEP)] as surrogates for the G-type nerve agents sarin (GB), soman (GD), and tabun (GA). OP surrogates were injected and vaporized with additional volatile organic compounds into a 50 m3 chamber finished with painted wallboard. Experiments were conducted at two furnishing levels: (i) chamber containing only hard surfaces including a desk, a bookcase, tables, and chairs and (ii) with the addition of plush materials including carpet with cushion, draperies, and upholstered furniture. Each furnishing level was studied with aged and new painted wallboard. Gas-phase concentrations were measured during sealed chamber adsorb and desorb phases and then fit to three mathematical variations of a previously proposed sorption model having a surface sink and allowing for an embedded sink. A four-parameter model allowing unequal transport rates between surface and embedded sinks provided excellent fits for all conditions. To evaluate the potential effect of sorption, this model was incorporated into an indoor air quality simulation model to predict indoor concentrations of a G-type agent and a nonsorbing agent for hypothetical outdoor releases with shelter-in-place (SIP) response. Sorption was simulated using a range of parameters obtained experimentally. Simulations considered outdoor Gaussian plumes of 1- and 5-h duration and infiltration rates of 0.1, 0.3, and 0.9 h(-1). Indoor toxic loads (TL) for a 10-h SIP were calculated as integral C2 dt for a G-type agent. For the 5-h plume, sheltering reduced TLs for the nonsorbing agent to approximately 10-65% of outdoor levels. Analogous TLs for a G-type agent were 2-31% or 0.3-12% of outdoor levels assuming slow or moderate sorption. The relative effect of sorption was more pronounced for the longer plume and higher infiltration rates.


Subject(s)
Chemical Warfare Agents/chemistry , Models, Theoretical , Organophosphorus Compounds/chemistry , Sarin/chemistry , Adsorption , Air Pollution, Indoor/analysis , Gases
SELECTION OF CITATIONS
SEARCH DETAIL
...