Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 8: 261, 2007 Aug 02.
Article in English | MEDLINE | ID: mdl-17678549

ABSTRACT

BACKGROUND: In Streptomyces coelicolor, bldA encodes the only tRNA for a rare leucine codon, UUA. This tRNA is unnecessary for growth, but is required for some aspects of secondary metabolism and morphological development. We describe a transcriptomic and proteomic analysis of the effects of deleting bldA on cellular processes during submerged culture: conditions relevant to the industrial production of antibiotics. RESULTS: At the end of rapid growth, a co-ordinated transient up-regulation of about 100 genes, including many for ribosomal proteins, was seen in the parent strain but not the DeltabldA mutant. Increased basal levels of the signal molecule ppGpp in the mutant strain may be responsible for this difference. Transcripts or proteins from a further 147 genes classified as bldA-influenced were mostly expressed late in culture in the wild-type, though others were significantly transcribed during exponential growth. Some were involved in the biosynthesis of seven secondary metabolites; and some have probable roles in reorganising metabolism after rapid growth. Many of the 147 genes were "function unknown", and may represent unknown aspects of Streptomyces biology. Only two of the 147 genes contain a TTA codon, but some effects of bldA could be traced to TTA codons in regulatory genes or polycistronic operons. Several proteins were affected post-translationally by the bldA deletion. There was a statistically significant but weak positive global correlation between transcript and corresponding protein levels. Different technical limitations of the two approaches were a major cause of discrepancies in the results obtained with them. CONCLUSION: Although deletion of bldA has very conspicuous effects on the gross phenotype, the bldA molecular phenotype revealed by the "dualomic" approach has shown that only about 2% of the genome is affected; but this includes many previously unknown effects at a variety of different levels, including post-translational changes in proteins and global cellular physiology.


Subject(s)
Culture Media/analysis , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Proteomics , RNA, Bacterial/genetics , RNA, Transfer, Leu/genetics , Streptomyces coelicolor/genetics , Base Sequence , Cluster Analysis , Gene Deletion , Genes, Bacterial , Guanine Nucleotides/analysis , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Organisms, Genetically Modified , Protein Processing, Post-Translational/genetics , Proteome/analysis , Streptomyces coelicolor/growth & development , Streptomyces coelicolor/metabolism
2.
Mol Microbiol ; 56(2): 465-79, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15813737

ABSTRACT

Gamma-butyrolactone signalling molecules are produced by many Streptomyces species, and several have been shown to regulate antibiotic production. In Streptomyces coelicolor A3(2) at least one gamma-butyrolactone (SCB1) has been shown to stimulate antibiotic production, and genes encoding proteins that are involved in its synthesis (scbA) and binding (scbR) have been characterized. Expression of these genes is autoregulated by a complex mechanism involving the gamma-butyrolactone. In this study, additional genes influenced by ScbR were identified by DNA microarray analysis, and included a cryptic cluster of genes for a hypothetical type I polyketide. Further analysis of this gene cluster revealed that the pathway-specific regulatory gene, kasO, is a direct target for regulation by ScbR. Gel retardation and DNase I footprinting analyses identified two potential binding sites for ScbR, one at -3 to -35 nt and the other at -222 to -244 nt upstream of the kasO transcriptional start site. Addition of SCB1 eliminated the DNA binding activity of ScbR at both sites. The expression of kasO was growth phase regulated in the parent (maximal during transition phase), undetectable in a scbA null mutant, and constitutively expressed in a scbR null mutant. Addition of SCB1 to the scbA mutant restored the expression of kasO, indicating that ScbR represses kasO until transition phase, when presumably SCB1 accumulates in sufficient quantity to relieve kasO repression. Expression of the cryptic antibiotic gene cluster was undetectable in a kasO deletion mutant. This is the first report with comprehensive in vivo and in vitro data to show that a gamma-butyrolactone-binding protein directly regulates a secondary metabolite pathway-specific regulatory gene in Streptomyces.


Subject(s)
Gene Expression Regulation, Bacterial , Hormones/metabolism , Macrolides/metabolism , Polyketide Synthases/genetics , Streptomyces/metabolism , 4-Butyrolactone/metabolism , Anti-Bacterial Agents/biosynthesis , Streptomyces/genetics , Streptomyces/growth & development
3.
Mol Ther ; 10(1): 172-80, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15233952

ABSTRACT

Ribozymes have been proposed as gene therapy agents against HIV-1, although many fundamental questions about their mechanism of action remain unclear. Few studies have compared directly the potential of different modified ribozyme species against a particular target. Here we compare the relative abilities of hammerhead (HhU5) and hairpin (HpU5) ribozymes directed against a well-studied target RNA that has therapeutic potential, located in the untranslated 5' region (U5), to inhibit HIV-1 replication. The two types of ribozymes showed similar antiviral efficacy after being stably transfected into HUT78 cells and subsequently challenged with HIV-1(SF2), but the HhU5 ribozyme showed faster cleavage kinetics when tested in a cell-free system. In the second part of this study, we examined whether different ribozymes were able to inhibit the integration of proviral DNA in infected HUT78 cells. We found that cell pools stably expressing HpU5 could limit the appearance of integrated provirus, indicating that they could inhibit the infecting viral RNA before reverse transcription. A preintegration effect was also found for cell pools expressing a ribozyme targeting the nef gene (HhNef) or a ribozyme targeting the LTR (HhLTR). However, no discernible preintegration effects were seen for the HhU5 ribozyme or an active ribozyme directed against an RNA target site in the pol gene (HhPol). Thus, the results suggest that the mode of ribozyme action varied between sites and is not dependent solely on inhibiting the infecting viral RNA. Evidence for a preintegration effect is extremely encouraging and indicates that "resistant" cells have some chance to repopulate the immune system through such a selective advantage. We also studied the ability of the different ribozymes to down regulate viral RNA postintegration.


Subject(s)
HIV-1/genetics , RNA, Catalytic/metabolism , RNA, Viral/metabolism , 5' Untranslated Regions/chemistry , 5' Untranslated Regions/genetics , 5' Untranslated Regions/metabolism , Base Sequence , Cell Line , DNA/chemistry , HIV Infections/therapy , HIV-1/metabolism , Humans , Molecular Sequence Data , Proviruses/chemistry , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , RNA, Viral/chemistry , Virus Integration/genetics , Virus Integration/physiology , Virus Replication/genetics , Virus Replication/physiology
4.
Mol Microbiol ; 50(1): 153-66, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14507371

ABSTRACT

The dnaK operon of Streptomyces coelicolor encodes the DnaK chaperone machine and the negative autoregulator HspR, which confers repression of the operon by binding to several inverted repeat sequences in the promoter region, dnaKp. Previous in vitro studies demonstrated that DnaK forms a specific complex with HspR bound to its operator sequences in dnaKp, and a model was proposed in which DnaK functions as a corepressor of the dnaK operon (Bucca, G., Brassington, A., Schonfeld, H.J., and Smith, C.P. (2000) Mol Microbiol 38: 1093-1103). Here we report in vivo DnaK depletion experiments which demonstrate that DnaK is a negative regulator of the dnaK operon. Cellular depletion of the DnaK chaperone leads to high-level transcription from dnaKp at the normal growth temperature. DNA microarray-based analysis of gene expression in wild-type and hspR-disruption mutant strains has identified a core cluster of genes regulated by HspR: the dnaK and clpB-SCO3660 operons and lon. These three transcription units are considered to be the direct targets of HspR. Significantly, analysis of the entire genome sequence revealed that the promoter regions of dnaK, clpB and lon are the only sequences that contain the HspR consensus binding sequence 5'-TTGAGY-N7-ACTCAA. S1 nuclease mapping confirmed that transcription of both clpB and lon is substantially enhanced at ambient temperature in strains depleted of DnaK, providing further evidence that these genes are members of the DnaK-HspR regulon. From transcriptome analysis, 17 genes were shown to be upregulated more than twofold in an hspR disruption mutant. This included the seven genes encoded by the dnaK, clpB and lon transcription units. Significantly, the other 10 genes are not heat-shock inducible in the wild type and their upregulation in the hspR mutant is considered to be an indirect consequence of enhanced synthesis of one or more components of the HspR regulon (the DnaK chaperone machine, ClpB and Lon protease).


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins , Gene Expression Regulation, Bacterial , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Regulon , Repressor Proteins/metabolism , Streptomyces/genetics , Adenosine Triphosphatases/metabolism , Base Sequence , DNA, Bacterial/metabolism , Endopeptidases/metabolism , Feedback, Physiological , Gene Expression Profiling , Genes, Bacterial , Heat-Shock Proteins/genetics , Molecular Chaperones/metabolism , Molecular Sequence Data , Mutation/genetics , Operon , Protein Binding , Repressor Proteins/genetics , Streptomyces/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...