Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36836671

ABSTRACT

Dunaliella salina (Chlorophyceae), Phormidium versicolor (Cyanophyceae), and Cylindrotheca closterium (Bacillariophyceae) were isolated from three ponds in the solar saltern of Sfax (Tunisia). Growth, pigment contents, and photosynthetic and antioxidant enzyme activities were measured under controlled conditions of three light levels (300, 500, and 1000 µmol photons m-2 s-1) and three NaCl concentrations (40, 80, and 140 g L-1). The highest salinity reduced the growth of D. salina and P. versicolor NCC466 and strongly inhibited that of C. closterium. According to ΦPSII values, the photosynthetic apparatus of P. versicolor was stimulated by increasing salinity, whereas that of D. salina and C. closterium was decreased by irradiance rise. The production of carotenoids in D. salina and P. versicolor was stimulated when salinity and irradiance increased, whereas it decreased in the diatom. Catalase (CAT), Superoxide dismutase (SOD), and Ascorbate peroxidase (APX) activities were only detected when the three species were cultivated under E1000. The antioxidant activity of carotenoids could compensate for the low antioxidant enzyme activity measured in D. salina. Salinity and irradiation levels interact with the physiology of three species that have mechanisms of more or less effective stress resistance, hence different resistance to environmental stresses according to the species. Under these stress-controlled conditions, P. versicolor and C. closterium strains could provide promising sources of extremolyte for several purposes.

2.
Life (Basel) ; 12(6)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35743868

ABSTRACT

Two local marine cyanobacteria, Phormidium sp. and Cyanothece sp., were batch-cultured under 18-19.5 °C, at 40 ppt salinity, using white LED light of low (40 µmol photons/m2/s) and high (160 µmol/m2/s) intensity and, additionally, blue, green and red LED light. Yield was highest in high white light in both species (2.15 g dw/L in Phormidium, 1.47 g/L in Cyanothece), followed by green light (1.25 g/L) in Cyanothece and low white and green (1.26-1.33 g/L) in Phormidium. Green light maximized phycocyanin in Phormidium (0.45 mg/mL), while phycoerythrin was enhanced (0.17 mg/mL) by blue light and allophycocyanin by all colors (~0.80 mg/mL). All colors maximized phycocyanin in Cyanothece (~0.32 mg/mL), while phycoerythrin and allophycocyanin peaked under green light (~0.138 and 0.38 mg/mL, respectively). In Phormidium, maximization of chlorophyll-a (9.3 µg/mL) was induced by green light, while total carotenoids and b-carotene (3.05 and 0.89 µg/mL, respectively) by high white light. In Cyanothece, both white light intensities along with green maximized chlorophyll-a (~9 µg/mL) while high white light and green maximized total carotenoids (2.6-3.0 µg/mL). This study strongly indicates that these cyanobacteria can be cultured at the first stage under white light to accumulate sufficient biomass and, subsequently, under colored light for enhancing phycobiliproteins.

3.
Springerplus ; 2(1): 66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23519098

ABSTRACT

We analysed the 16S rRNA gene diversity within the bacterioplankton community in the water column of the ornamental fish Pterophyllum scalare and Archocentrus nigrofasciatus aquaria during a 60-day growth experiment in order to detect any dominant bacterial species and their possible association with the rearing organisms. The basic physical and chemical parameters remained stable but the bacterial community at 0, 30 and 60 days showed marked differences in bacterial cell abundance and diversity. We found high species richness but no dominant phylotypes were detected. Only few of the phylotypes were found in more than one time point per treatment and always with low relative abundance. The majority of the common phylotypes belonged to the Proteobacteria phylum and were closely related to Acinetobacter junii, Pseudomonas sp., Nevskia ramosa, Vogesella perlucida, Chitinomonas taiwanensis, Acidovorax sp., Pelomonas saccharophila and the rest belonged to the α-Proteobacteria, Bacteroidetes, Actinobacteria, candidate division OP11 and one unaffiliated group. Several of these phylotypes were closely related to known taxa including Sphingopyxis chilensis, Flexibacter aurantiacus subsp. excathedrus and Mycobacterium sp. Despite the high phylogenetic diversity most of the inferred ecophysiological roles of the found phylotypes are related to nitrogen metabolism, a key process for fish aquaria.

SELECTION OF CITATIONS
SEARCH DETAIL
...