Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 771: 136460, 2022 02 06.
Article in English | MEDLINE | ID: mdl-35051437

ABSTRACT

Transcranial magnetic stimulation (TMS) is a neurophysiological technique that enables noninvasive evaluation of neuronal excitability in the brain. In the past, a large number of antiepileptic drugs were shown to increase the motor threshold (MT) in clinical TMS studies, suggesting the inhibition of excessive neuronal excitability. To facilitate drug development, the confirmation of similar changes in neurophysiological biomarkers in both preclinical and clinical studies is crucial; however, until now, there have been no data showing the drug efficacies on neuronal excitabilities as measured using TMS in rodents. In this study, we found that the antiepileptic drugs, lamotrigine (10 mg/kg) and retigabine (5 mg/kg), significantly increased the MT in rats using TMS, which is similar to clinical study findings. In addition, we demonstrated that these drugs could inhibit maximal electroshock (MES)-induced seizures in rats when given at the same dose required to be effective in the TMS experiment. These findings suggest that the effects of antiepileptic drugs in our rat TMS system have a similar sensitivity to that of the antiepileptic effects in rats with MES-induced seizures. The measurement of MT in a TMS study may be a noninvasive translational approach for predicting antiepileptic efficacy in drug development.


Subject(s)
Anticonvulsants/therapeutic use , Carbamates/therapeutic use , Evoked Potentials, Motor , Lamotrigine/therapeutic use , Phenylenediamines/therapeutic use , Seizures/drug therapy , Animals , Electroshock/adverse effects , Male , Rats , Rats, Sprague-Dawley , Seizures/etiology , Transcranial Magnetic Stimulation
2.
Brain Behav ; 8(1): e00881, 2018 01.
Article in English | MEDLINE | ID: mdl-29568682

ABSTRACT

Objectives: Bombesin receptor subtype-3 (BRS-3) has been suggested to play a potential role in energy homeostasis. However, the physiological mechanism of BRS-3 on energy homeostasis remains unknown. Thus, we investigated the BRS-3-mediated neuronal pathway involved in food intake and energy expenditure. Materials and Methods: Expression of BRS-3 in the rat brain was histologically examined. The BRS-3 neurons activated by refeeding-induced satiety or a BRS-3 agonist were identified by c-Fos immunostaining. We also analyzed expression changes in feeding-relating peptides in the brain of fasted rats administered with the BRS-3 agonist. Results: In the paraventricular hypothalamic nucleus (PVH), dorsomedial hypothalamic nucleus (DMH), and medial preoptic area (MPA), strong c-Fos induction was observed in the BRS-3 neurons especially in PVH after refeeding. However, the BRS-3 neurons in the PVH did not express feeding-regulating peptides, while the BRS-3 agonist administration induced c-Fos expression in the DMH and MPA, which were not refeeding-sensitive, as well as in the PVH. The BRS-3 agonist administration changed the Pomc and Cart mRNA level in several brain regions of fasted rats. Conclusion: These results suggest that BRS-3 neurons in the PVH are a novel functional subdivision in the PVH that regulates feeding behavior. As the MPA and DMH are reportedly involved in thermoregulation and energy metabolism, the BRS-3 neurons in the MPA/DMH might mediate the energy expenditure control. POMC and CART may contribute to BRS-3 neuron-mediated energy homeostasis regulation. In summary, BRS-3-expressing neurons could regulate energy homeostasis through a novel neuronal pathway.


Subject(s)
Energy Metabolism/physiology , Homeostasis/physiology , Hypothalamus/metabolism , Neurons/metabolism , Receptors, Bombesin/metabolism , Animals , CHO Cells , Cricetulus , Eating/physiology , Feeding Behavior/physiology , Hypothalamus/drug effects , Male , Mice, Knockout , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Bombesin/agonists , Receptors, Somatostatin/genetics
3.
Endocrinology ; 158(5): 1298-1313, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28324017

ABSTRACT

Bombesin receptor subtype 3 (BRS-3) is an orphan G protein-coupled receptor. Based on the obese phenotype of male BRS-3-deficient mice, BRS-3 has been considered an attractive target for obesity treatment. Here, we developed a selective BRS-3 agonist (compound-A) and evaluated its antiobesity effects. Compound-A showed anorectic effects and enhanced energy expenditure in diet-induced-obese (DIO)-F344 rats. Moreover, repeated oral administration of compound-A for 7 days resulted in a significant body weight reduction in DIO-F344 rats. We also evaluated compound-A for cardiovascular side effects using telemeterized Sprague-Dawley (SD) rats. Oral administration of compound-A resulted in transient blood pressure increases in SD rats. To investigate the underlying mechanisms of BRS-3 agonist effects, we focused on the suprachiasmatic nucleus (SCN), the main control center of circadian rhythms in the hypothalamus, also regulating sympathetic nervous system. Compound-A significantly increased the messenger RNA expression of Brs-3, c-fos, and circadian rhythm genes in SCN of DIO-F344 rats. Because SCN also controls the hypothalamic-pituitary-adrenal (HPA) axis, we evaluated the relationship between BRS-3 and the HPA axis. Oral administration of compound-A caused a significant increase of plasma corticosterone levels in DIO-F344 rats. On this basis, energy expenditure enhancement by compound-A may be due to a circadian rhythm change in central and peripheral tissues, enhancement of peripheral lipid metabolism, and stimulation of the sympathetic nervous system. Furthermore, the blood pressure increase by compound-A could be associated with sympathetic nervous system stimulation via SCN and elevation of plasma corticosterone levels through activation of the HPA axis.


Subject(s)
Anti-Obesity Agents/pharmacology , Circadian Rhythm/drug effects , Obesity/drug therapy , Receptors, Bombesin/agonists , Animals , Body Weight/drug effects , Corticosterone/blood , Diet, High-Fat , Energy Metabolism/drug effects , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Lipid Metabolism/drug effects , Male , Obesity/metabolism , Obesity/physiopathology , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Weight Loss/drug effects
4.
Eur J Pharmacol ; 796: 45-53, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-27986627

ABSTRACT

Melanin-concentrating hormone (MCH), a cyclic neuropeptide expressed predominantly in the lateral hypothalamus, plays an important role in the control of feeding behavior and energy homeostasis. Mice lacking MCH or MCH1 receptor are resistant to diet-induced obesity (DIO) and MCH1 receptor antagonists show potent anti-obesity effects in preclinical studies, indicating that MCH1 receptor is a promising target for anti-obesity drugs. Moreover, recent studies have suggested the potential of MCH1 receptor antagonists for treatment of non-alcoholic fatty liver disease (NAFLD). In the present study, we show the anti-obesity and anti-hepatosteatosis effect of our novel MCH1 receptor antagonist, Compound A. Repeated oral administration of Compound A resulted in dose-dependent body weight reduction and had an anorectic effect in DIO mice. The body weight lowering effect of Compound A was more potent than that of pair-feeding. Compound A also reduced lipid content and the expression level of lipogenesis-, inflammation-, and fibrosis-related genes in the liver of DIO mice. Conversely, intracerebroventricular infusion of MCH caused induction of hepatic steatosis as well as increase in body weight in high-fat diet-fed wild type mice, but not MCH1 receptor knockout mice. The pair-feeding study revealed the MCH-MCH1 receptor system affects hepatic steatosis through a mechanism that is independent of body weight change. Metabolome analysis demonstrated that Compound A upregulated lipid metabolism-related molecules, such as acylcarnitines and cardiolipins, in the liver. These findings suggest that our novel MCH1 receptor antagonist, Compound A, exerts its beneficial therapeutic effect on NAFLD and obesity through a central MCH-MCH1 receptor pathway.


Subject(s)
Anti-Obesity Agents/pharmacology , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/chemically induced , Obesity/drug therapy , Receptors, Pituitary Hormone/antagonists & inhibitors , Animals , Anti-Obesity Agents/therapeutic use , Body Weight/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Gene Knockout Techniques , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Rats , Receptors, Pituitary Hormone/deficiency , Receptors, Pituitary Hormone/genetics
5.
Bioorg Med Chem ; 24(11): 2504-18, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27117261

ABSTRACT

To develop non-basic melanin-concentrating hormone receptor 1 (MCHR1) antagonists with a high probability of target selectivity and therapeutic window, we explored neutral bicyclic motifs that could replace the previously reported imidazo[1,2-a]pyridine or 1H-benzimidazole motif. The results indicated that the binding affinity of a chemically neutral 2H-indazole derivative 8a with MCHR1 (hMCHR1: IC50=35nM) was comparable to that of the imidazopyridine and benzimidazole derivatives (1 and 2, respectively) reported so far. However, 8a was positive in the Ames test using TA1537 in S9- condition. Based on a putative intercalation of 8a with DNA, we introduced a sterically-hindering cyclopropyl group on the indazole ring to decrease planarity, which led to the discovery of 1-(2-cyclopropyl-3-methyl-2H-indazol-5-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl]methoxy}pyridin-2(1H)-one 8l without mutagenicity in TA1537. Compound 8l exerted significant antiobesity effects in diet-induced obese F344 rats and exhibited promising safety profile.


Subject(s)
Anti-Obesity Agents/pharmacology , Indazoles/pharmacology , Obesity/drug therapy , Pyridones/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/chemistry , Dose-Response Relationship, Drug , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Male , Molecular Structure , Pyridones/chemical synthesis , Pyridones/chemistry , Rats , Rats, Inbred F344 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...