Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 6(4): 1248-57, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19913116

ABSTRACT

Silicon-releasable microfiber meshes consisting of silicon-doped vaterite (SiV) particles and poly(lactic acid) (PLA) hybrids were prepared by electrospinning. Due to their flexibility and porosity they formed ideal membranes or scaffolds for guided bone regeneration. In addition, a trace amount of silicon species has been reported to stimulate osteogenic cells to mineralize and enhance bone formation. We propose a new method of preparation of silicon-releasing microfiber meshes by electrospinning. Their structure and hydroxyapatite (HA)-forming abilities in simulated body fluid were examined. In addition, we studied their stimulatory effects on osteoblast-like cells in vitro and bone-forming ability in vivo, with a special emphasis on their ability to release silicon. The meshes consisted of a hybrid of carboxy groups in PLA and amino groups in siloxane, derived from aminopropyltriethoxysilane or calcium ions on the SiV surface. This hybrid exhibited an enhanced ability to form HA. The meshes coated with HA released 0.2-0.7 mg l(-1) silicon species into the culture medium over 7 days. Enhanced proliferation of osteoblast-like cells was observed using the meshes and new bone formed on the meshes when implanted into the calvaria of rabbits. These meshes, therefore, provide an excellent substrate for bone regeneration and exhibit enhanced bone-forming ability under both in vitro and in vivo conditions.


Subject(s)
Bone Regeneration/drug effects , Calcium Carbonate/pharmacology , Guided Tissue Regeneration/methods , Lactic Acid/pharmacology , Polymers/pharmacology , Silicon/pharmacology , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Proliferation/drug effects , Culture Media/pharmacology , Magnetic Resonance Spectroscopy , Materials Testing , Mice , Microscopy, Electron, Scanning , Molecular Weight , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/ultrastructure , Osteogenesis/drug effects , Polyesters , Rabbits , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...