Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1260393, 2023.
Article in English | MEDLINE | ID: mdl-37790790

ABSTRACT

Soybean is an important global source of plant-based protein. A persistent trend has been observed over the past two decades that soybeans grown in western Canada have lower seed protein content than soybeans grown in eastern Canada. In this study, 10 soybean genotypes ranging in average seed protein content were grown in an eastern location (control) and three western locations (experimental) in Canada. Seed protein and oil contents were measured for all lines in each location. RNA-sequencing and differential gene expression analysis were used to identify differentially expressed genes that may account for relatively low protein content in western-grown soybeans. Differentially expressed genes were enriched for ontologies and pathways that included amino acid biosynthesis, circadian rhythm, starch metabolism, and lipid biosynthesis. Gene ontology, pathway mapping, and quantitative trait locus (QTL) mapping collectively provide a close inspection of mechanisms influencing nitrogen assimilation and amino acid biosynthesis between soybeans grown in the East and West. It was found that western-grown soybeans had persistent upregulation of asparaginase (an asparagine hydrolase) and persistent downregulation of asparagine synthetase across 30 individual differential expression datasets. This specific difference in asparagine metabolism between growing environments is almost certainly related to the observed differences in seed protein content because of the positive correlation between seed protein content at maturity and free asparagine in the developing seed. These results provided pointed information on seed protein-related genes influenced by environment. This information is valuable for breeding programs and genetic engineering of geographically optimized soybeans.

2.
Plants (Basel) ; 11(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145738

ABSTRACT

Over the past two decades soybeans grown in western Canada have persistently had lower seed protein than those grown in eastern Canada. To understand the discrepancy in seed protein content between eastern- and western-grown soybeans, RNA-seq and differential expression analysis have been investigated. Ten soybean genotypes, ranging from low to high in seed protein content, were grown in four locations across eastern (Ottawa) and western (Morden, Brandon, and Saskatoon) Canada. Differential expression analysis revealed 34 differentially expressed genes encoding Glycine max Sugars Will Eventually be Exported Transporters (GmSWEETs), including paralogs GmSWEET29 and GmSWEET34 (AtSWEET2 homologs) that were consistently upregulated across all ten genotypes in each of the western locations over three years. GmSWEET29 and GmSWEET34 are likely candidates underlying the lower seed protein content of western soybeans. GmSWEET20 (AtSWEET12 homolog) was downregulated in the western locations and may also play a role in lower seed protein content. These findings are valuable for improving soybean agriculture in western growing regions, establishing more strategic and efficient agricultural practices.

3.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35886986

ABSTRACT

Common bean (Phaseolus vulgaris L.) is a food crop that is an important source of dietary proteins and carbohydrates. Marsh spot is a physiological disorder that diminishes seed quality in beans. Prior research suggested that this disease is likely caused by manganese (Mn) deficiency during seed development and that marsh spot resistance is controlled by at least four genes. In this study, genetic mapping was performed to identify quantitative trait loci (QTL) and the potential candidate genes associated with marsh spot resistance. All 138 recombinant inbred lines (RILs) from a bi-parental population were evaluated for marsh spot resistance during five years from 2015 to 2019 in sandy and heavy clay soils in Morden, Manitoba, Canada. The RILs were sequenced using a genotyping by sequencing approach. A total of 52,676 single nucleotide polymorphisms (SNPs) were identified and filtered to generate a high-quality set of 2066 SNPs for QTL mapping. A genetic map based on 1273 SNP markers distributed on 11 chromosomes and covering 1599 cm was constructed. A total of 12 stable and 4 environment-specific QTL were identified using additive effect models, and an additional two epistatic QTL interacting with two of the 16 QTL were identified using an epistasis model. Genome-wide scans of the candidate genes identified 13 metal transport-related candidate genes co-locating within six QTL regions. In particular, two QTL (QTL.3.1 and QTL.3.2) with the highest R2 values (21.8% and 24.5%, respectively) harbored several metal transport genes Phvul.003G086300, Phvul.003G092500, Phvul.003G104900, Phvul.003G099700, and Phvul.003G108900 in a large genomic region of 16.8-27.5 Mb on chromosome 3. These results advance the current understanding of the genetic mechanisms of marsh spot resistance in cranberry common bean and provide new genomic resources for use in genomics-assisted breeding and for candidate gene isolation and functional characterization.


Subject(s)
Phaseolus , Vaccinium macrocarpon , Disease Resistance/genetics , Genetic Linkage , Phaseolus/genetics , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Wetlands
4.
Plants (Basel) ; 11(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35567147

ABSTRACT

Soybean is a valuable crop, used in animal feed and for human consumption. Selecting soybean cultivars with low seed cadmium (Cd) concentration is important for the purpose of minimizing the transfer of Cd into the human body. To ensure international trade, farmers need to produce soybean that meets the European Union (EU) Cd limit of 0.2 mg kg-1. In this study, we evaluated two populations of recombinant inbred lines (RILs), X5154 and X4050, for seed Cd accumulation. Linkage maps were constructed with 325 and 280 polymorphic simple sequence repeat (SSR) markers, respectively, and used to identify a novel minor quantitative trait locus (QTL) on chromosome 13 in the X4050 population between SSR markers Satt522 and Satt218. Based on a gene ontology search within the QTL region, seven genes were identified as candidates responsible for low seed Cd accumulation, including Glyma.13G308700 and Glyma.13G309100. In addition, we confirmed the known major gene, Cda1, in the X5154 population and developed KASP and CAPS/dCAPS allele-specific markers for efficient marker-assisted breeding for Cda1.

5.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613666

ABSTRACT

Soybean (Glycine max (L.) Merr.) is among the most valuable crops based on its nutritious seed protein and oil. Protein quality, evaluated as the ratio of glycinin (11S) to ß-conglycinin (7S), can play a role in food and feed quality. To help uncover the underlying differences between high and low protein soybean varieties, we performed differential expression analysis on high and low total protein soybean varieties and high and low 11S soybean varieties grown in four locations across Eastern and Western Canada over three years (2018-2020). Simultaneously, ten individual differential expression datasets for high vs. low total protein soybeans and ten individual differential expression datasets for high vs. low 11S soybeans were assessed, for a total of 20 datasets. The top 15 most upregulated and the 15 most downregulated genes were extracted from each differential expression dataset and cross-examination was conducted to create shortlists of the most consistently differentially expressed genes. Shortlisted genes were assessed for gene ontology to gain a global appreciation of the commonly differentially expressed genes. Genes with roles in the lipid metabolic pathway and carbohydrate metabolic pathway were differentially expressed in high total protein and high 11S soybeans in comparison to their low total protein and low 11S counterparts. Expression differences were consistent between East and West locations with the exception of one, Glyma.03G054100. These data are important for uncovering the genes and biological pathways responsible for the difference in seed protein between high and low total protein or 11S cultivars.


Subject(s)
Glycine max , Soybean Proteins , Glycine max/genetics , Glycine max/metabolism , Soybean Proteins/genetics , Soybean Proteins/metabolism , Canada , Seeds/genetics , Seeds/chemistry
6.
Sci Rep ; 9(1): 19408, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31857646

ABSTRACT

Nitrogen (N), phosphorus (P), and potassium (K) exert various effects on adzuki bean yields. Our research was conducted in a semi-arid area, and four test sites were established in environments that have chernozem or sandy loam soils. During a five-year period, the effects of N, P, and K fertilizers on yield were comprehensively investigated in field trials (2014-2016) and for model-implementation trials (2017-2018), with models established prior to the latter. In the field trials, 23 treatments comprising different N, P, and K combinations significantly affected both yield and yield components, and regression analysis indicated that the experimental results were suitable for model establishment. The model subsequently demonstrated that the yield and the yield components were more sensitive to N and K fertilizer than to P fertilizer. Moreover, the yield and yield components increased. These yield increases were intense in response to the 0.5 to 1.34 levels in terms of the single effects; interaction effects; and the effects of combinations of N, P, and K fertilizers. Moreover, the effects of combinations of N, P, and K fertilizers were more significant on yield than were the single or interaction effects of N, P, and K fertilizers. The optimal fertilizer combination that resulted in high yields (≥1941.53 kg ha-1) comprised 57.23-68.43 kg ha-1 N, 36.04-47.32 kg ha-1 P2O5 and 50.29-61.27 kg ha-1 K2O. The fertilizer combination that resulted in the maximum yield was 62.98 kg ha-1 N, 47.04 kg ha-1 P2O5 and 59.95 kg ha-1 K2O (N:P2O5:K2O = 1:0.75:0.95), which produced the model-expected yield in trials at multiple sites. An economical fertilizer combination was determined on the basis of the best fertilizer measures in consideration of the cost of fertilizer and seed; this combination achieved yields of 2236.17 kg ha-1, the profit was 15,653.16 Yuan ha-1, and the corresponding rates were 57.60 kg ha-1 N, 47.03 kg ha-1 P2O5, and 31.64 kg ha-1 K2O (N:P2O5:K2O = 1:0.82:0.55).


Subject(s)
Desert Climate , Fertilizers , Nitrogen/pharmacology , Phosphorus/pharmacology , Potassium/pharmacology , Vigna/growth & development , China , Fertilizers/economics , Models, Theoretical , Regression Analysis , Vigna/drug effects
7.
Mol Breed ; 38(3): 34, 2018.
Article in English | MEDLINE | ID: mdl-29568229

ABSTRACT

Seed hardness trait has a profound impact on cooking time and canning quality in dry beans. This study aims to identify the unknown genetic factors and associated molecular markers to better understand and tag this trait. An F2:7 recombinant inbred line (RIL) population was derived from a cross between the hard and soft seeded black bean parents (H68-4 and BK04-001). Eighty-five RILs and the parental lines were grown at two locations in southern Manitoba during years 2014-2016. Seed samples were harvested manually at maturity to test for seed hardness traits. The hydration capacity and stone seed count were estimated by soaking the seeds overnight at room temperature following AACC method 56-35.01. Seed samples from 2016 tests were also cooked to determine effect of seed hardness on cooking quality. For mapping of genomic regions contributing to the traits, the RIL population was genotyped using the genotype by sequencing (GBS) approach. The QTL mapping revealed that in addition to the major QTL on chromosome 7 at a genomic location previously reported to affect seed-hydration, two novel QTL with significant effects were also detected on chromosomes 1 and 2. In addition, a major QTL affecting the visual appeal of cooked bean was mapped on chromosome 4. This multi-year-site study shows that despite large environmental effects, seed hardness is an oligo-genic and highly heritable trait, which is inherited independently of the cooking quality scored as visual appeal of cooked beans. The identification of the QTLs and development of SNP markers associated with seed hardness can be applied for common bean variety improvement and genetic exploitation of these traits.

8.
Front Plant Sci ; 6: 92, 2015.
Article in English | MEDLINE | ID: mdl-25750649

ABSTRACT

It has been hypothesized that the relatively low concentration of sulfur amino acids in legume seeds might be an ecological adaptation to nutrient poor, marginal soils. SARC1 and SMARC1N-PN1 are genetically related lines of common bean (dry bean, Phaseolus vulgaris) differing in seed storage protein composition. In SMARC1N-PN1, the lack of phaseolin and major lectins is compensated by increased levels of sulfur-rich proteins, resulting in an enhanced concentration of cysteine and methionine, mostly at the expense of the abundant non-protein amino acid, S-methylcysteine. To identify potential effects associated with an increased concentration of sulfur amino acids in the protein pool, the response of the two genotypes to low and high sulfur nutrition was evaluated under controlled conditions. Seed yield was increased by the high sulfate treatment in SMARC1N-PN1. The seed concentrations of sulfur, sulfate, and S-methylcysteine were altered by the sulfur treatment in both genotypes. The concentration of total cysteine and extractible globulins was increased specifically in SMARC1N-PN1. Proteomic analysis identified arcelin-like protein 4, lipoxygenase-3, albumin-2, and alpha amylase inhibitor beta chain as having increased levels under high sulfur conditions. Lipoxygenase-3 accumulation was sensitive to sulfur nutrition only in SMARC1N-PN1. Under field conditions, both SARC1 and SMARC1N-PN1 exhibited a slight increase in yield in response to sulfur treatment, typical for common bean.

9.
J Hered ; 100(2): 263-9, 2009.
Article in English | MEDLINE | ID: mdl-18984858

ABSTRACT

Seed calcium content is an important quality attribute of specialty soybean [Glycine max (L.) Merr.] for soyfoods. However, analyzing seed for calcium content is time consuming and labor intensive. Knowing quantitative trait loci (QTL) for seed calcium will facilitate the development of elite cultivars with proper calcium content through marker-assisted selection (MAS). The objective of this study was to identify major QTL associated with calcium content in soybean seed. Calcium content was tested in 178 F(2:3) and 157 F(2:4) lines derived from the cross of SS-516 (low calcium) x Camp (high calcium). The F(2:3) lines were genotyped with 148 simple sequence repeat markers in a previous study on seed hardness, and the genotypic data were used in the QTL analysis of the current study. Four QTL designated as Ca1, Ca2, Ca3, and Ca4 on linkage groups (LGs) A2, I, and M were identified by both single-marker analysis and composite-interval mapping, and the QTL accounted for 10.7%, 16.3%, 14.9%, and 9.7% of calcium content variation, respectively. In addition, multiple-interval mapping analysis revealed a significant dominant-by-dominant interaction effect between Ca1 and Ca3, which accounted for 4.3% calcium content variation. These QTL will facilitate the implementation of MAS for calcium content in soybean-breeding programs.


Subject(s)
Calcium/metabolism , Glycine max/genetics , Glycine max/metabolism , Quantitative Trait Loci , Seeds/metabolism , Chromosome Mapping , Crosses, Genetic , Genetic Markers , Minisatellite Repeats/genetics , Quantitative Trait Loci/physiology , Quantitative Trait, Heritable , Seeds/genetics
10.
Theor Appl Genet ; 117(6): 857-71, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18587557

ABSTRACT

The Chinese genebank contains 23,587 soybean landraces collected from 29 provinces. In this study, a representative collection of 1,863 landraces were assessed for genetic diversity and genetic differentiation in order to provide useful information for effective management and utilization. A total of 1,160 SSR alleles at 59 SSR loci were detected including 97 unique and 485 low-frequency alleles, which indicated great richness and uniqueness of genetic variation in this core collection. Seven clusters were inferred by STRUCTURE analysis, which is in good agreement with a neighbor-joining tree. The cluster subdivision was also supported by highly significant pairwise Fst values and was generally in accordance with differences in planting area and sowing season. The cluster HSuM, which contains accessions collected from the region between 32.0 and 40.5 degrees N, 105.4 and 122.2 degrees E along the central and downstream parts of the Yellow River, was the most genetically diverse of the seven clusters. This provides the first molecular evidence for the hypotheses that the origin of cultivated soybean is the Yellow River region. A high proportion (95.1%) of pairs of alleles from different loci was in LD in the complete dataset. This was mostly due to overall population structure, since the number of locus pairs in LD was reduced sharply within each of the clusters compared to the complete dataset. This shows that population structure needs to be accounted for in association studies conducted within this collection. The low value of LD within the clusters can be seen as evidence that much of the recombination events in the past have been maintained in soybean, fixed in homozygous self-fertilizing landraces.


Subject(s)
Glycine max/genetics , Alleles , Breeding , China , Cluster Analysis , Databases, Genetic , Gene Frequency , Genetic Markers , Genetic Variation , Linkage Disequilibrium , Phylogeny , Quantitative Trait Loci , Glycine max/classification
11.
J Hered ; 99(6): 598-603, 2008.
Article in English | MEDLINE | ID: mdl-18492653

ABSTRACT

J05 soybean was previously identified to carry 2 independent genes, Rsv1 and Rsv3, for "soybean mosaic virus" (SMV) resistance by inheritance and allelism studies. The objective of this research was to confirm the 2 genes in J05 using molecular markers so that a marker-assisted selection can be implemented. The segregation of F(2) plants from J05 x Essex exhibited a good fit to a 3:1 ratio when inoculated with SMV G1. Three simple sequence repeat (SSR) markers near Rsv1, Satt114, Satt510, and Sat_154, amplified polymorphic DNA fragments between J05 and Essex and were closely linked to the gene on soybean molecular linkage group (MLG) F, thus verifying the presence of Rsv1 in J05 for resistance to SMV G1. The presence of Rsv3 in J05 was confirmed by 2 closely linked SSR markers on MLG B2, Satt726 and Sat_424, in F(2:3) lines that were derived from the SMV G1-susceptible F(2) plants and segregated in a 1:2:1 ratio for reaction to SMV G7. Two closely linked markers for Rsv4, Satt296 and Satt542, segregated independently of SMV resistance, indicating the absence of Rsv4 in J05. These SSR markers for Rsv1 and Rsv3 can serve as a useful molecular tool for selection and pyramiding of genes in J05 for SMV resistance.


Subject(s)
Genes, Plant , Glycine max/genetics , Glycine max/virology , Plant Diseases/genetics , Plant Diseases/virology , Potyvirus , Repetitive Sequences, Nucleic Acid , Crosses, Genetic , DNA, Plant/chemistry , DNA, Plant/metabolism , Genetic Markers , Immunity, Innate/genetics , Plant Diseases/immunology
12.
Plant Physiol ; 147(3): 1143-57, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18508955

ABSTRACT

Synthesis and accumulation of seed storage proteins (SSPs) is an important aspect of the seed maturation program. Genes encoding SSPs are specifically and highly expressed in the seed during maturation. However, the mechanisms that repress the expression of these genes in leaf tissue are not well understood. To gain insight into the repression mechanisms, we performed a genetic screen for mutants that express SSPs in leaves. Here, we show that mutations affecting BRAHMA (BRM), a SNF2 chromatin-remodeling ATPase, cause ectopic expression of a subset of SSPs and other embryogenesis-related genes in leaf tissue. Consistent with the notion that such SNF2-like ATPases form protein complexes in vivo, we observed similar phenotypes for mutations of AtSWI3C, a BRM-interacting partner, and BSH, a SNF5 homolog and essential SWI/SNF subunit. Chromatin immunoprecipitation experiments show that BRM is recruited to the promoters of a number of embryogenesis genes in wild-type leaves, including the 2S genes, expressed in brm leaves. Consistent with its role in nucleosome remodeling, BRM appears to affect the chromatin structure of the At2S2 promoter. Thus, the BRM-containing chromatin-remodeling ATPase complex involved in many aspects of plant development mediates the repression of SSPs in leaf tissue.


Subject(s)
Adenosine Triphosphatases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Albumins/genetics , Albumins/metabolism , Amino Acid Sequence , Arabidopsis/growth & development , Arabidopsis/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Development , Genes, Reporter , Molecular Sequence Data , Mutation , Promoter Regions, Genetic , Transcription Factors/metabolism
13.
Planta ; 222(3): 512-20, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15912356

ABSTRACT

Two naturally occurring Arabidopsis mutants, Cape Verde Islands and Monte (Mr-0), with aberrant 12S seed storage protein (SSP) profiles have been identified by SDS-PAGE. In both mutants, one of the 12S globulin bands is missing while a new band of lower molecular mass is present. Tandem mass spectrometry-mass spectrometry (MS/MS) analyses of the mutant peptides have revealed that both are shorter variants of 12S globulin with deletion sites detected within the alpha-subunits of 12S globulin cruciferin B (CRB) and C (CRC), respectively. Sequence analyses of the genomic DNA flanking the deletion sites have demonstrated that both deletions occurred at the genomic level. These two mutants are referred to as CRBDelta12 and CRCDelta13 with the delta sign indicating a deletion and the number indicating amino acids deleted. Alignment of these two mutant sequences with that of soybean A3B4 subunit, for which the crystal structure was determined recently, have revealed that the CRCDelta13 deletion is located in a hypervariable/disordered region, and will probably not affect the structure of the hexameric globulin. The CRBDelta12 deletion, however, is located in a binding region that is thought to be important for the hexamer formation. However, CRBDelta12 appears to accumulate normally as judged by its band intensity relative to the other SSP subunits on the protein gels. Thus it seems that the seed can, to a certain extent, tolerate some mutations in its storage proteins.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Deletion , Globulins/genetics , Seeds/genetics , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Base Sequence , Molecular Sequence Data , Protein Subunits/genetics , Seed Storage Proteins , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...