Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 33(8): 4350-4359, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36124829

ABSTRACT

Recent studies in many kinds of mammals have established the existence of multiple γ rhythms in the cerebral cortex subserving different functions. In the primary visual cortex (V1), visually induced γ rhythms are dependent on stimulus features. However, experimental findings of γ power induced by varying the size of the drifting grating are inconsistent. Here, we reinvestigated the spatial summation properties of visually induced spike and γ rhythm activities in mouse V1. Our results show that drifting sinusoidal grating stimuli mainly induce 2 γ band rhythms, including a low-frequency band (25-45 Hz) and a high-frequency band (55-75 Hz). Unlike previous findings, we discovered that visually induced γ power could also exhibit extrareceptive field (ERF) modulatory properties. The modulation by ERF stimulation could be either suppressive, countersuppressive, or nonsuppressive, mostly similar to the local spike activity. Moreover, further analysis of the neuron group exhibiting surround suppression in both spike and γ activity revealed that the strength of the surround suppression and the receptive field size showed moderate correlations between measurements by spike and γ rhythm activity. Our findings improve the understanding of the characteristics and neural mechanisms of induced γ rhythms in visual spatial summation.


Subject(s)
Visual Cortex , Visual Fields , Animals , Mice , Gamma Rhythm , Primary Visual Cortex , Visual Cortex/physiology , Photic Stimulation/methods , Mammals
2.
Vision Res ; 177: 6-11, 2020 12.
Article in English | MEDLINE | ID: mdl-32932127

ABSTRACT

Rhodopsin S334ter-3 retinal degeneration rats have been widely used to investigate degenerative diseases of the retina. In this model, morphological and electrophysiological changes have been observed in the retina, superior colliculus and primary visual cortex (V1). However, no study so far has examined rhodopsin S334ter-3 rats with regards to their contrast response in V1 - a fundamental property of visual information processing. In this study, experimental rats (S334ter-3) carried one copy of the mutant transgene. We compared responses to spatio-temporal variations in luminance contrast in the primary visual cortex of these rats with those in Long-Evans (LE) rats to elucidate the degeneration-specific activity changes in this part of the visual pathway. We measured extracellular responses to different stimulus contrasts at the preferred parameters of each recorded cell under classical receptive field (CRF) stimulation. Our results show that V1 cells in the S334ter-3 group exhibit stronger spontaneous activity but weaker stimulus-evoked responses at medium and high contrasts. By fitting responses to a sigmoid function, we found that the S334ter-3 group had a lower Rmax but a larger exponent N than the LE group. However, we did not find a significant difference in C50 value. These results indicate the decrease in discriminating the stimuli contrast and loss in responses and lower signal to noise ratio after retinal degeneration. Our study supports the notion that a considerable degree of plasticity is found in cortex after retinal degeneration, indicating that visual restoration therapies would succeed if the retina could send useful signals to the brain.


Subject(s)
Retinal Degeneration , Visual Cortex , Animals , Rats , Rats, Long-Evans , Retina , Rhodopsin
SELECTION OF CITATIONS
SEARCH DETAIL
...