Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 5(2): 275-81, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17309682

ABSTRACT

Transgenic tobacco plants expressing three different forms of Arabidopsis plant peptide deformylase (AtDEF1.1, AtDEF1.2 and AtDEF2; EC 3.5.1.88) were evaluated for resistance to actinonin, a naturally occurring peptide deformylase inhibitor. Over-expression of either AtDEF1.2 or AtDEF2 resulted in resistance to actinonin, but over-expression of AtDEF1.1 did not. Immunological analyses demonstrated that AtDEF1.2 and AtDEF2 enzymes were present in both stromal and thylakoid fractions in chloroplasts, but AtDEF1.1 was localized to mitochondria. The highest enzyme activity was associated with stromal AtDEF2, which was approximately 180-fold greater than the level of endogenous activity in the host plant. Resistance to actinonin cosegregated with kanamycin resistance in Atdef1.2-D and Atdef2-D transgenic plants. Here, we demonstrate that the combination of plant peptide deformylase and peptide deformylase inhibitors may represent a native gene selectable marker system for chloroplast and nuclear transformation vectors, and also suggest plant peptide deformylase as a potential broad-spectrum herbicide target.


Subject(s)
Amidohydrolases/genetics , Chloroplasts/metabolism , Genetic Markers , Herbicide Resistance/genetics , Nicotiana/genetics , Protein Modification, Translational , Arabidopsis/enzymology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Herbicides/metabolism , Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacology , Plants, Genetically Modified , Transformation, Genetic
2.
Am J Bot ; 91(9): 1304-11, 2004 Sep.
Article in English | MEDLINE | ID: mdl-21652362

ABSTRACT

Eukaryotic homologs of bacterial peptide deformylases were recently found in several vascular plants and may be essential in chloroplast protein processing. Treating tobacco seedlings with the peptide deformylase inhibitor actinonin resulted in leaf chlorosis and reduced growth and development, indicative of a systemic movement of the inhibitor. Photosystem II (PSII) activity was reduced, manifested as a significant decrease in the maximum quantum efficiency of photosystem II. Accumulation and assembly of nascent D1 protein into PSII monomers was also reduced, eventually leading to PSII disassembly and leaf necrosis. Processing and assembly of D1 protein in tobacco was a major and potentially critical target of peptide deformylase inhibition. These results confirm that N-terminal deformylation is an essential step in the accumulation and assembly of PSII subunit polypeptides in the chloroplasts of vascular plants.

3.
Biochemistry ; 42(19): 5828-36, 2003 May 20.
Article in English | MEDLINE | ID: mdl-12741841

ABSTRACT

A freeze-thaw cycle of isolated thylakoids in darkness in the presence of ascorbate was employed as a novel experimental system to activate the light-harvesting complex (LHC) II kinase. Under these conditions ascorbate reduces Q(A), the primary quinone electron acceptor of photosystem (PS) II, and the subsequent reduction of plastoquinone and the cytochrome (cyt) b(6)f complex results in the activation of the LHCII kinase. Using this activation system, several facets of regulation of LHCII protein phosphorylation were unravelled. (i) Myxothiazol inhibited the activation of LHCII protein phosphorylation, thus being a potent inhibitor of electron flow not only in cyt bc complexes but in darkness also in cyt b(6)f complexes. (ii) Oxygen, the only electron acceptor in darkness, was required for LHCII kinase activation demonstrating that after a full reduction of the cyt b(6)f complex, an additional plastoquinol oxidation cycle in the quinol oxidation (Qo) site is required for LHCII kinase activation. (iii) In the absence of electron flow, when the intersystem electron carriers are reduced, the activated LHCII kinase has a half-life of 40 min, whereas the fully activated LHCII kinase becomes deactivated in a time scale of seconds upon oxidation of the cyt b(6)f complex, indicating that the kinase constantly reads the redox poise of the cyt b(6)f complex. (iv) The LHCII kinase is more tightly bound to the thylakoid membrane than the PS II core protein kinase(s). It is concluded that oxidation of plastoquinol at the Qo site of the reduced cyt b(6)f complex is required for LHCII kinase activation, while rapid reoccupation of the Qo site with plastoquinol is crucial for sustenance of the active state of the LHCII kinase.


Subject(s)
Ascorbic Acid/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Darkness , Electron Transport , Enzyme Activation , Freezing , Light , Light-Harvesting Protein Complexes , NADP/metabolism , Oxidation-Reduction , Pisum sativum/metabolism , Pisum sativum/radiation effects , Phosphorylation , Photosynthetic Reaction Center Complex Proteins/chemistry , Plastoquinone/metabolism , Thylakoids/metabolism , Thylakoids/radiation effects
4.
Funct Plant Biol ; 30(11): 1097-1103, 2003 Jan.
Article in English | MEDLINE | ID: mdl-32689092

ABSTRACT

Antibiotics are widely used to monitor signalling cascades within a plant cell, for example between the nucleus and chloroplasts, and to study the function of the photosynthetic machinery. In the present study, we attempted to test various antibiotics with respect to their expected modes of function and also to monitor their possible side effects on metabolic processes in mature leaves of pea (Pisum sativum L.). Streptomycin, despite its reported prokaryotic nature, prevented translation not only in the chloroplast, but also in the cytosol. Application of puromycin, an inhibitor of protein synthesis in both the pro- and eukaryotes, resulted in severe photoinhibition of photosystem II upon illumination, yet had no effect on plastid translation, thus implying a severe side effect on plastid metabolism. Prokaryotic-type translation inhibitors lincomycin, spectinomycin and erythromycin blocked translation in the chloroplast without any direct effects on cytoplasmic protein synthesis. More detailed studies with lincomycin, however, revealed a strong modulation of the expression of nuclear-encoded genes by slowing down the transcription rate of photosynthesis-related Lhcb and RbcS genes, and furthermore, lincomycin clearly decreased the phosphorylation level of the LHCII proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...