Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Sport Health Sci ; 13(4): 499-508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38158179

ABSTRACT

BACKGROUND: The ergogenic effects of caffeine intake on exercise performance are well-established, even if differences exist among individuals in response to caffeine intake. The genetic variation of a specific gene, human cytochrome P450 enzyme 1A2 (CYP1A2) (rs762551), may be one reason for this difference. This systematic review and meta-analysis aimed to comprehensively evaluate the influence of CYP1A2 gene types on athletes' exercise performance after caffeine intake. METHODS: A literature search through 4 databases (Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure) was conducted until March 2023. The effect size was expressed as the weighted mean difference (WMD) by calculating fixed effects meta-analysis if heterogeneity was not significant (I2 ≤ 50% and p ≥ 0.1). Subgroup analyses were performed based on AA and AC/CC genotype of CYP1A2. RESULTS: The final number of studies meeting the inclusion criteria was 12 (n = 666 participants). The overall analysis showed that the cycling time trial significantly improved after caffeine intake (WMD = -0.48, 95% confidence interval (95%CI): -0.83 to -0.13, p = 0.007). In subgroup analyses, acute caffeine intake improved cycling time trial only in individuals with the A allele (WMD = -0.90, 95%CI: -1.48 to -0.33, p = 0.002), but not the C allele (WMD = -0.08, 95%CI: -0.32 to 0.17, p = 0.53). Caffeine supplementation did not influence the Wingate (WMD = 8.07, 95%CI: -22.04 to 38.18, p = 0.60) or countermovement jump test (CMJ) performance (WMD = 1.17, 95%CI: -0.02 to 2.36, p = 0.05), and these outcomes were not influenced by CYP1A2 genotype. CONCLUSION: Participants with the CYP1A2 genotype with A allele improved their cycling time trials after caffeine supplementation. However, compared to placebo, acute caffeine supplementation failed to increase the Wingate or CMJ performance, regardless of CYP1A2 genotype.


Subject(s)
Athletic Performance , Caffeine , Cytochrome P-450 CYP1A2 , Genotype , Performance-Enhancing Substances , Cytochrome P-450 CYP1A2/genetics , Humans , Caffeine/administration & dosage , Caffeine/pharmacology , Athletic Performance/physiology , Performance-Enhancing Substances/administration & dosage , Dietary Supplements , Bicycling/physiology
2.
Front Physiol ; 13: 999811, 2022.
Article in English | MEDLINE | ID: mdl-36388121

ABSTRACT

Caffeinated energy drinks are commonly taken to improve exercise performance, but there are few studies on the influence of different doses on an athlete's performance. We conducted a double-blind, randomized, counter-balanced, and crossover research study to examine the effects of low caffeinated energy drink (Low ED) or high caffeinated energy drink (High ED) supplement on the performance, haematological response, and oxidative stress in triathletes. Twelve male participants underwent three testing sessions separated by weekly intervals, consisting of sprint triathlon training (0.75 km swim, 20 km cycle, and 5 km run). Before and during the trials, participants were randomly provided with either placebo (PLA) group, Low ED group, or High ED group. Exercise performance in the High ED group decreased significantly compared with the PLA and Low ED groups (p < 0.05). However, participants in the Low ED group also experienced an improved performance (p = 0.054). Analysis of variance revealed no differences among the three groups in cortisol and testosterone levels, or the Borg Rating of Perceived Exertion score (p > 0.5). Furthermore, superoxide dismutase (SOD) was reduced with exercise and were lowest in the High ED group. However, compared with PLA, a significant decrease of thiobarbituric acid reactive substances (TBARS) was observed in Low ED and High ED groups (p < 0.05). This indicates that caffeinated energy drink consumption may improve performance and reduce oxidative stress in sprint triathlon athletes. However, individual differences should be considered when supplementing with caffeinated energy drinks to decrease side effects.

3.
Nutrients ; 12(4)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325914

ABSTRACT

The study tested whether anserine (beta-alanyl-3-methyl-l-histidine), the active ingredient of chicken essence affects exercise-induced oxidative stress, cell integrity, and haematology biomarkers. In a randomized placebo-controlled repeated-measures design, ten healthy men ingested anserine in either a low dose (ANS-LD) 15 mg.kg-1.bw-1, high dose (ANS-HD) 30 mg.kg-1.bw-1, or placebo (PLA), following an exercise challenge (time to exhaustion), on three separate occasions. Anserine supplementation increased superoxide dismutase (SOD) by 50% (p < 0.001, effect size d = 0.8 for both ANS-LD and ANS-HD), and preserved catalase (CAT) activity suggesting an improved antioxidant activity. However, both ANS-LD and ANS-HD elevated glutathione disulfide (GSSG), (both p < 0.001, main treatment effect), and consequently lowered the glutathione to glutathione disulfide (GSH/GSSG) ratio compared with PLA (p < 0.01, main treatment effect), without significant effects on thiobarbituric acid active reactive substances (TBARS). Exercise-induced cell damage biomarkers of glutamic-oxaloacetic transaminase (GOT) and myoglobin were unaffected by anserine. There were slight but significant elevations in glutamate pyruvate transaminase (GPT) and creatine kinase isoenzyme (CKMB), especially in ANS-HD (p < 0.05) compared with ANS-LD or PLA. Haematological biomarkers were largely unaffected by anserine, its dose, and without interaction with post exercise time-course. However, compared with ANS-LD and PLA, ANS-HD increased the mean cell volume (MCV), and decreased the mean corpuscular haemoglobin concentration (MCHC) (p < 0.001). Anserine preserves cellular homoeostasis through enhanced antioxidant activity and protects cell integrity in healthy men, which is important for chronic disease prevention. However, anserine temporal elevated exercise-induced cell-damage, together with enhanced antioxidant activity and haematological responses suggest an augmented exercise-induced adaptative response and recovery.


Subject(s)
Anserine/administration & dosage , Anserine/pharmacology , Cell Size/drug effects , Dietary Supplements , Exercise/physiology , Healthy Volunteers , Homeostasis/drug effects , Oxidative Stress/drug effects , Adult , Antioxidants , Catalase/metabolism , Cross-Over Studies , Glutathione/metabolism , Glutathione Disulfide/metabolism , Hemoglobins/metabolism , Humans , Male , Superoxide Dismutase/metabolism , Young Adult
4.
Med Sci Sports Exerc ; 52(8): 1793-1800, 2020 08.
Article in English | MEDLINE | ID: mdl-32079912

ABSTRACT

PURPOSE: We investigated whether obesity adversities such as excessive body fat, compensatory hyperinsulinemia, metabolic endotoxemia, irregular androgenicity, and reduced cardiorespiratory and anaerobic fitness are ameliorated by high-intensity interval training (HIIT) with or without caffeine supplementation in women with obesity. METHODS: Twenty-four women with obesity (Asian cutoff point body mass index ≥ 27 kg·m, body fat = 40%) were evenly randomized to caffeine (CAF) and placebo (PLA) trials for an 8-wk HIIT program (10 × 1-min sprints, interspersed by 1-min rest). CAF (3 mg·kg·bw) and PLA were supplemented before each training session. Body fat was assessed by dual-energy x-ray absorptiometry before and after training together with assessments of glucose tolerance (oral glucose tolerance test, or OGTT), lipopolysaccharide endotoxins, testosterone, cardiorespiratory, and anaerobic fitness. RESULTS: Significant interaction between HIIT and CAF was found for OGTT glucose and OGTT insulin levels (P = 0.001 and P = 0.049 respectively). HIIT-alone increased glucose at 90 min (P = 0.049) and OGTT insulin at 60 min (P = 0.038). Conversely, HIIT with CAF decreased OGTT glucose at 120 min (P = 0.024) without affecting OGTT insulin. HIIT-alone induced 28.3% higher OGTT insulin (effect size d = 0.59 for area under the curve) and 14.5% higher OGTT glucose (d = 0.28). Conversely, HIIT with CAF decreased OGTT glucose by 19.1% (d = 0.51 for area under the curve) without changing OGTT insulin. HIIT-alone effects on glycemia and insulinemia were concurrent with a 31% increase in lipopolysaccharide endotoxins (P = 0.07; d = 0.78; confidence interval, 5.7-8.7) in the PLA but not in CAF treatment (P = 0.99; d = 0.003; confidence interval, 6.5-10.6), although endotoxin level remained within the recommended healthy thresholds. Furthermore, either HIIT alone or with CAF reduced body fat percentage (P < 0.001, ANOVA main training effects), increased muscle mass (P = 0.002), reduced testosterone (P = 0.005), and increased cardiorespiratory and anaerobic capacity (P < 0.001). CONCLUSIONS: HIIT induces fat loss and decreases androgenicity in women with obesity. However, its side effects such as endotoxemia and hyperinsulinemia are ameliorated by caffeine supplementation.


Subject(s)
Caffeine/administration & dosage , Exercise Therapy/methods , High-Intensity Interval Training , Obesity/blood , Obesity/therapy , Adolescent , Adult , Blood Glucose/metabolism , Body Fat Distribution , Cardiorespiratory Fitness , Endotoxins/blood , Female , High-Intensity Interval Training/adverse effects , Humans , Insulin/blood , Lipopolysaccharides/blood , Physical Fitness , Single-Blind Method , Testosterone/blood , Young Adult
5.
Article in English | MEDLINE | ID: mdl-31467574

ABSTRACT

We investigated the effect of chronic seaweed (Gracilaria asiatica) supplementation on maximal carrying capacity, muscle mass, and oxidative stress in rats following high-intensity resistance exercise (RE). Forty Sprague-Daley rats were equally categorized into control, exercise, seaweed, and exercise plus seaweed (ES) groups. Rats in respective groups performed RE (once per 2 days) or received seaweed (250 mg/kg bodyweight, orally) for 10 weeks. Results showed that seaweed consumption in combination with RE significantly (p < 0.05) increased maximal weight carrying capacity compared to RE alone. FHL muscle mass was significantly higher in both exercise and ES groups. Notably, high-intensity RE-induced lipid peroxidation, as evidenced by elevated thiobarbituric acid reactive substances (TBARS) in muscle, was substantially diminished (p < 0.05) by seaweed treatment. This antioxidative effect of seaweed was further represented by augmented superoxide dismutase activity and glutathione levels in seaweed groups. We noticed increased insulin concentrations and HOMA-IR, while the fasting blood glucose levels remained stable in seaweed and ES groups. Our findings conclude that seaweed in combination with RE enhanced maximal carrying strength and attenuated oxidative stress through improved antioxidant capacity. Seaweed could be a potential nutritional supplement to boost performance and to prevent exercise-induced muscle damage.

6.
Aging Dis ; 9(4): 647-663, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30090653

ABSTRACT

Diabetic patients exhibit serum AGE accumulation, which is associated with reactive oxygen species (ROS) production and diabetic cardiomyopathy. ROS-induced PKCδ activation is linked to mitochondrial dysfunction in human cells. However, the role of PKCδ in cardiac and mitochondrial dysfunction caused by AGE in diabetes is still unclear. AGE-BSA-treated cardiac cells showed dose- and time-dependent cell apoptosis, ROS generation, and selective PKCδ activation, which were reversed by NAC and rotenone. Similar tendency was also observed in diabetic and obese animal hearts. Furthermore, enhanced apoptosis and reduced survival signaling by AGE-BSA or PKCδ-WT transfection were reversed by kinase-deficient (KD) of PKCδ transfection or PKCδ inhibitor, respectively, indicating that AGE-BSA-induced cardiomyocyte death is PKCδ-dependent. Increased levels of mitochondrial mass as well as mitochondrial fission by AGE-BSA or PKCδ activator were reduced by rottlerin, siPKCδ or KD transfection, indicating that the AGE-BSA-induced mitochondrial damage is PKCδ-dependent. Using super-resolution microscopy, we confirmed that PKCδ colocalized with mitochondria. Interestingly, the mitochondrial functional analysis by Seahorse XF-24 flux analyzer showed similar results. Our findings indicated that cardiac PKCδ activation mediates AGE-BSA-induced cardiomyocyte apoptosis via ROS production and may play a key role in the development of cardiac mitochondrial dysfunction in rats with diabetes and obesity.

7.
Br J Nutr ; 117(10): 1343-1350, 2017 May.
Article in English | MEDLINE | ID: mdl-28631582

ABSTRACT

The purpose of this study was to investigate the effects of 8-week green tea extract (GTE) supplementation on promoting postexercise muscle glycogen resynthesis and systemic energy substrate utilisation in young college students. A total of eight healthy male participants (age: 22·0 (se 1·0) years, BMI: 24·2 (se 0·7) kg/m2, VO2max: 43·2 (se 2·4) ml/kg per min) participated in this study. GTE (500 mg/d for 8 weeks) was compared with placebo in participants in a double-blind/placebo-controlled and crossover study design with an 8-week washout period. Thereafter, all participants performed a 60-min cycling exercise (75 % VO2max) and consumed a carbohydrate-enriched meal immediately after exercise. Vastus lateralis muscle samples were collected immediately (0 h) and 3 h after exercise, and blood and gaseous samples were collected during the 3-h postexercise recovery period. An 8-week oral GTE supplementation had no effects on further promoting muscle glycogen resynthesis in exercised human skeletal muscle, but the exercise-induced muscle GLUT type 4 (GLUT4) protein content was greater in the GTE supplementation trial (P<0·05). We observed that, during the postexercise recovery period, GTE supplementation elicited an increase in energy reliance on fat oxidation compared with the placebo trial (P<0·05), although there were no differences in blood glucose and insulin responses between the two trials. In summary, 8-week oral GTE supplementation increases postexercise systemic fat oxidation and exercise-induced muscle GLUT4 protein content in response to an acute bout of endurance exercise. However, GTE supplementation has no further benefit on promoting muscle glycogen resynthesis during the postexercise period.


Subject(s)
Exercise/physiology , Glycogen/metabolism , Muscle, Skeletal/physiology , Plant Extracts/pharmacology , Tea/chemistry , Area Under Curve , Blood Glucose , Humans , Insulin/blood , Male , Plant Extracts/chemistry , Young Adult
8.
Molecules ; 22(2)2017 Feb 05.
Article in English | MEDLINE | ID: mdl-28165424

ABSTRACT

Changbai Mountain Ginseng (CMG, Panax ginseng C.A. Mey) is a traditional medicine commonly found in Northeast China and grows at elevations of 2000 m or higher in the Changbai Mountain Range. CMG, considered to be a "buried treasure medicine", is priced higher than other types of ginseng. However, few studies have demonstrated the effects of CMG supplementation on exercise performance, physical fatigue, and the biochemical profile. The major compound of CMG extract was characterized by electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Male ICR mice were divided into 3 groups, the vehicle, CMG-1X and CMG-5X groups (n = 8 per group), and respectively administered 0, 5, or 25 mg/kg/day of CMG extract orally for four weeks. HPLC-ESI-MS/MS results showed that the major compound in CMG extract is ginsenoside Ro. CMG extract significantly increased muscle weight and relative muscle weight (%). CMG extract supplementation dose-dependently increased grip strength (p < 0.0001) and endurance swimming time, decreased levels of serum lactate (p < 0.0001), ammonia (p < 0.0001), creatine kinase (CK, p = 0.0002), and blood urea nitrogen (p < 0.0001), and economized glucose levels (p < 0.0001) after acute exercise challenge. The glycogen in the gastrocnemius muscle was significantly increased with CMG extract treatment. Biochemical profile results showed that creatinine and triacylglycerol significantly decreased and total protein and glucose increased with CMG treatment. This is the first report that CMG extract supplementation increases muscle mass, improves exercise performance and energy utilization, and decreases fatigue-associated parameters in vivo. The major component of CMG extract is ginsenoside Ro, which could be a potential bioactive compound for use as an ergogenic aid ingredient by the food industry.


Subject(s)
Dietary Supplements , Motor Activity/drug effects , Panax/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Blood Glucose/drug effects , Chromatography, High Pressure Liquid , Fatigue/drug therapy , Fatigue/metabolism , Glycogen/metabolism , Liver/drug effects , Liver/metabolism , Mice , Muscle Strength/drug effects , Muscles/drug effects , Muscles/metabolism , Physical Conditioning, Animal , Phytochemicals/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Time Factors
9.
Environ Toxicol ; 32(2): 679-689, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27087047

ABSTRACT

Q10 is a powerful antioxidant often used in medical nutritional supplements for cancer treatment. This study determined whether Q10 could effectively prevent cardio-toxicity caused by doxorubicin treatment. Four week old SD rats were segregated into groups namely control, doxorubicin group (challenged with doxorubicin), Dox + Q10 group (with doxorubicin challenge and oral Q10 treatment), and Q10 group (with oral Q10 treatment). Doxorubicin groups received IP doxorubicin (2.5 mg/kg) every 3 days and Q10 groups received Q10 (10 mg/kg) every day. Three weeks of doxorubicin challenge caused significant reduction in heart weight, disarray in cardiomyocyte arrangement, elevation of collagen accumulation, enhancement of fibrosis and cell death associated proteins, and inhibition of survival proteins. However, Q10 effectively protected cardiomyocytes and ameliorated fibrosis and cell death induced by doxorubicin. Q10 is, therefore, evidently a potential drug to prevent heart damage caused by doxorubicin. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 679-689, 2017.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Cardiomyopathies/prevention & control , Cardiotonic Agents/pharmacology , Doxorubicin/adverse effects , Ubiquinone/analogs & derivatives , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cardiomyopathies/chemically induced , Cell Survival/drug effects , Male , Myocytes, Cardiac/drug effects , Rats , Rats, Sprague-Dawley , Ubiquinone/pharmacology
10.
PLoS One ; 10(1): e0116387, 2015.
Article in English | MEDLINE | ID: mdl-25617625

ABSTRACT

UNLABELLED: The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). CONCLUSION: Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.


Subject(s)
Dietary Supplements , Exercise , Ginsenosides/pharmacology , Muscle, Skeletal/drug effects , Panax/chemistry , Performance-Enhancing Substances/pharmacology , Adult , Double-Blind Method , Ginsenosides/chemistry , Ginsenosides/isolation & purification , Glucose Transporter Type 4/metabolism , Glycogen/metabolism , Humans , Interleukin-10/metabolism , Lipid Peroxidation/drug effects , Male , Muscle, Skeletal/metabolism , Performance-Enhancing Substances/chemistry , Performance-Enhancing Substances/isolation & purification , Physical Endurance/drug effects , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
J Sports Sci ; 33(9): 915-23, 2015.
Article in English | MEDLINE | ID: mdl-25385360

ABSTRACT

Present study examined the effects of conjugated linoleic acid (CLA) supplementation on glycogen resynthesis in exercised human skeletal muscle. Twelve male participants completed a cross-over trial with CLA (3.8 g/day for 8 week) or placebo supplements by separation of 8 weeks. CLA is a mixture of trans-10 cis-12 and cis-9 trans-11 isomers (50:50). On experiment day, all participants performed 60-min cycling exercise at 75% VO2 max, then consumed a carbohydrate meal immediately after exercise and recovered for 3 h. Biopsied muscle samples from vastus lateralis were obtained immediately (0 h) and 3 h following exercise. Simultaneously, blood and gaseous samples were collected for every 30 min during 3-h recovery. Results showed significantly increased muscle glycogen content with CLA after a single bout of exercise (P < 0.05). Muscle glucose transporter type 4 expression was significantly elevated immediately after exercise, and this elevation was continued until 3 h after exercise in CLA trial. However, P-Akt/Akt ratio was not significantly altered, while glucose tolerance was impaired with CLA. Gaseous exchange data showed no beneficial effect of CLA on fat oxidation, instead lower non-esterified fatty acid and glycerol levels were found at 0 h. Our findings conclude that CLA supplementation can enhance the glycogen resynthesis rate in exercised human skeletal muscle.


Subject(s)
Dietary Supplements , Exercise/physiology , Glycogen/biosynthesis , Linoleic Acids, Conjugated/administration & dosage , Muscle, Skeletal/metabolism , Blood Glucose/metabolism , Cross-Over Studies , Fatty Acids, Nonesterified/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 4/metabolism , Homeostasis , Humans , Insulin/blood , Male , Protein Serine-Threonine Kinases/metabolism , Pulmonary Ventilation , Young Adult
12.
High Alt Med Biol ; 15(3): 371-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25251930

ABSTRACT

High altitude training is a widely used strategy for improving aerobic exercise performance. Both Rhodiola crenulata (R) and Cordyceps sinensis (C) supplements have been reported to improve exercise performance. However, it is not clear whether the provision of R and C during high altitude training could further enhance aerobic endurance capacity. In this study, we examined the effect of R and C based supplementation on aerobic exercise capacity following 2-week high altitude training. Alterations to autonomic nervous system activity, circulatory hormonal, and hematological profiles were investigated. Eighteen male subjects were divided into two groups: Placebo (n=9) and R/C supplementation (RC, n=9). Both groups received either RC (R: 1400 mg+C: 600 mg per day) or the placebo during a 2-week training period at an altitude of 2200 m. After 2 weeks of altitude training, compared with Placebo group, the exhaustive run time was markedly longer (Placebo: +2.2% vs. RC: +5.7%; p<0.05) and the decline of parasympathetic (PNS) activity was significantly prevented in RC group (Placebo: -51% vs. RC: -41%; p<0.05). Red blood cell, hematocrit, and hemoglobin levels were elevated in both groups to a comparable extent after high altitude training (p<0.05), whereas the erythropoietin (EPO) level remained higher in the Placebo group (∼48% above RC values; p<0.05). The provision of an RC supplement during altitude training provides greater training benefits in improving aerobic performance. This beneficial effect of RC treatment may result from better maintenance of PNS activity and accelerated physiological adaptations during high altitude training.


Subject(s)
Altitude , Cordyceps , Dietary Supplements , Exercise/physiology , Physical Endurance/physiology , Rhodiola , Biomarkers/metabolism , Double-Blind Method , Humans , Hypoxia/etiology , Male , Oxygen Consumption , Parasympathetic Nervous System/physiology
13.
Int J Mol Sci ; 15(5): 8280-92, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24821545

ABSTRACT

Adipocyte differentiation and the extent of subsequent fat accumulation are closely related to the occurrence and progression of diseases such as insulin resistance and obesity. Black soybean koji (BSK) is produced by the fermentation of black soybean with Aspergilllus awamori. Previous study indicated that BSK extract has antioxidative and multifunctional bioactivities, however, the role of BSK in the regulation of energy metabolism is still unclear. We aimed to investigate the effect of glucose utilization on insulin-resistant 3T3-L1 preadipocytes and adipogenesis-related protein expression in differentiated adipocytes with BSK treatment. Cytoxicity assay revealed that BSK did not adversely affect cell viability at levels up to 200 µg/mL. The potential for glucose utilization was increased by increased glucose transporter 1 (GLUT1), GLUT4 and protein kinase B (AKT) protein expression in insulin-resistant 3T3-L1 cells in response to BSK treatment. Simultaneously, BSK inhibited lipid droplet accumulation in differentiated 3T3-L1 cells. The inhibitory effect of adipogenesis was associated with downregulated peroxisome proliferator-activated receptor g (PPARγ) level and upregulated Acrp30 protein expression. Our results suggest that BSK extract could improve glucose uptake by modulating GLUT1 and GLUT4 expression in a 3T3-L1 insulin-resistance cell model. In addition, BSK suppressed differentiation and lipid accumulation in mature 3T3-L1 adipocytes, which may suggest its potential for food supplementation to prevent obesity and related metabolic abnormalities.


Subject(s)
Adipocytes/cytology , Adipogenesis/drug effects , Glucose/metabolism , Glycine max/chemistry , Insulin Resistance , Isoflavones/pharmacology , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 4/metabolism , Isoflavones/chemistry , Isoflavones/isolation & purification , Mice , PPAR gamma/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification
14.
J Int Soc Sports Nutr ; 10(1): 7, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23402436

ABSTRACT

BACKGROUND: Deep oceans have been suggested as a possible site where the origin of life occurred. Along with this theoretical lineage, experiments using components from deep ocean water to recreate life is underway. Here, we propose that if terrestrial organisms indeed evolved from deep oceans, supply of deep ocean mineral water (DOM) to humans, as a land creature, may replenish loss of molecular complexity associated with evolutionary sea-to-land migration. METHODS: We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of DOM, taken from a depth of 662 meters off the coast of Hualien, Taiwan, on time of recovery from a fatiguing exercise conducted at 30°C. RESULTS: The fatiguing exercise protocol caused a protracted reduction in aerobic power (reduced VO2max) for 48 h. However, DOM supplementation resulted in complete recovery of aerobic power within 4 h (P < 0.05). Muscle power was also elevated above placebo levels within 24 h of recovery (P < 0.05). Increased circulating creatine kinase (CK) and myoglobin, indicatives of exercise-induced muscle damage, were completely eliminated by DOM (P < 0.05) in parallel with attenuated oxidative damage (P < 0.05). CONCLUSION: Our results provide compelling evidence that DOM contains soluble elements, which can increase human recovery following an exhaustive physical challenge.

15.
Chin J Physiol ; 56(1): 18-25, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23347012

ABSTRACT

Swimmers tend to have greater body fat than athletes from other sports. The purpose of the study was to examine changes in body composition after altitude hypoxia exposure and the role of blood distribution to the skeletal muscle in swimmers. With a constant training volume of 12.3 km/day, young male swimmers (N = 10, 14.8 ± 0.5 years) moved from sea-level to a higher altitude of 2,300 meters. Body composition was measured before and after translocation to altitude using dual-energy X-ray absorptiometry (DXA) along with 8 control male subjects who resided at sea level for the same period of time. To determine the effects of hypoxia on muscle blood perfusion, total hemoglobin concentration (THC) was traced by near-infrared spectroscopy (NIRS) in the triceps and quadriceps muscles under glucose-ingested and insulin-secreted conditions during hypoxia exposure (16% O2) after training. While no change in body composition was found in the control group, subjects who trained at altitude had unequivocally decreased fat mass (-1.7 ± 0.3 kg, -11.4%) with increased lean mass (+0.8 ± 0.2 kg, +1.5%). Arterial oxygen saturation significantly decreased with increased plasma lactate during hypoxia recovery mimicking 2,300 meters at altitude (~93% versus ~97%). Intriguingly, hypoxia resulted in elevated muscle THC, and sympathetic nervous activities occurred in parallel with greater-percent oxygen saturation in both muscle groups. In conclusion, the present study provides evidence that increased blood distribution to the skeletal muscle under postprandial condition may contribute to the reciprocally increased muscle mass and decreased body mass after a 3-week altitude exposure in swimmers.


Subject(s)
Adipose Tissue/metabolism , Altitude , Hypoxia/metabolism , Muscle, Skeletal/blood supply , Swimming/physiology , Adolescent , Body Composition , Exercise , Humans , Male
16.
Chin J Physiol ; 56(6): 334-40, 2013 Dec 31.
Article in English | MEDLINE | ID: mdl-24495180

ABSTRACT

Previous biomolecular and animal studies have shown that a room-temperature far-infrared-rayemitting ceramic material (bioceramic) demonstrates physical-biological effects, including the normalization of psychologically induced stress-conditioned elevated heart rate in animals. In this clinical study, the Harvard step test, the resting metabolic rate (RMR) assessment and the treadmill running test were conducted to evaluate possible physiological effects of the bioceramic material in human patients. The analysis of heart rate variability (HRV) during the Harvard step test indicated that the bioceramic material significantly increased the high-frequency (HF) power spectrum. In addition, the results of RMR analysis suggest that the bioceramic material reduced oxygen consumption (VO2). Our results demonstrate that the bioceramic material has the tendency to stimulate parasympathetic responses, which may reduce resting energy expenditure and improve cardiorespiratory recovery following exercise.


Subject(s)
Basal Metabolism/radiation effects , Ceramics , Exercise Test , Adolescent , Adult , Basal Metabolism/physiology , Female , Heart Rate/physiology , Heart Rate/radiation effects , Humans , Infrared Rays , Male , Oxygen Consumption/radiation effects
17.
J Int Soc Sports Nutr ; 9(1): 23, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22607394

ABSTRACT

BACKGROUND: Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1) on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. METHODS: Forty weight-matched rats were evenly divided into control (N = 20) and Rg1 (N = 20) groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA) muscles were surgically collected immediately after exercise along with non-exercise rats. RESULTS: Exhaustive exercise significantly (p<0.05) increased the lipid peroxidation of control group, as evidenced by elevated malondialdehyde (MDA) levels. The increased oxidative stress after exercise was also confirmed by decreased reduced glutathione to oxidized glutathione ratio (GSH/GSSG ratio) in control rats. However, these changes were completely eliminated in Rg1 group. Catalase (CAT) and glutathione peroxidase (GPx) activities were significantly (p<0.05) increased by Rg1 in non-exercise rats, while no significant change after exercise. Nevertheless, glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly increased after exercise in Rg1 group. CONCLUSIONS: This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress.

18.
Article in English | MEDLINE | ID: mdl-21941591

ABSTRACT

Despite regular exercise benefits, acute exhaustive exercise elicits oxidative damage in liver. The present study determined the hepatoprotective properties of ginsenoside-Rg1 against exhaustive exercise-induced oxidative stress in rats. Forty rats were assigned into vehicle and ginsenoside-Rg1 groups (0.1 mg/kg bodyweight). After 10-week treatment, ten rats from each group performed exhaustive swimming. Estimated oxidative damage markers, including thiobarbituric acid reactive substance (TBARS) (67%) and protein carbonyls (56%), were significantly (P < 0.01) elevated after exhaustive exercise but alleviated in ginsenoside-Rg1 pretreated rats. Furthermore, exhaustive exercise drastically decreased glutathione (GSH) content (∼79%) with concurrent decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities. However, these changes were attenuated in Rg1 group. Additionally, increased xanthine oxidase (XO) activity and nitric oxide (NO) levels after exercise were also inhibited by Rg1 pretreatment. For the first time, our findings provide strong evidence that ginsenoside-Rg1 can protect the liver against exhaustive exercise-induced oxidative damage.

19.
Alcohol ; 44(6): 523-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20705416

ABSTRACT

Chronic alcohol consumption causes severe hepatic oxidative damage, particularly to old subjects by decreasing various antioxidant enzymes. In this study, we test the hypothesis that exercise training can protect the aging liver against alcohol-induced oxidative damage. Two different age groups of Wistar albino rats (3 months young, n=24; 18 months old, n=24) were evenly divided into four groups: control (Con), exercise trained (Tr, 23 m/min 30 min/day, 5 days/week for 2 months), ethanol drinking/treated (Et, 2.0 g/kg b.w. orally), and exercise training plus ethanol drinking/treated (Tr+Et). We found significantly (P<.001) lowered hepatic antioxidant enzymes including superoxide dismutase, catalase, selenium (Se)-dependent glutathione peroxidase (Se-GSH-Px), Se-non-dependent glutathione peroxidase (non-Se-GSH-Px), glutathione reductase, and glutathione S-transferase activities in aged rats compared with young. Age-related decrease in antioxidant enzyme status was further exacerbated with ethanol drinking, which indicates liver in aged rats is more susceptible to oxidative damage because of decreased free radical scavenging system in aged/old ethanol-drinking rats. However, the decrease in liver antioxidant enzymes status with ethanol consumption was ameliorated by 2 months exercise training in old and young rats. These results demonstrate that age-associated decrease in hepatic free radical scavenging system exacerbated by ethanol drinking. For the first time, we found that this deterioration was significantly reversed by exercise training in aging liver, thus protects against alcohol-induced oxidative damage.


Subject(s)
Aging , Antioxidants , Ethanol/adverse effects , Liver Diseases, Alcoholic/prevention & control , Liver/enzymology , Physical Conditioning, Animal , Animals , Catalase/analysis , Ethanol/administration & dosage , Glutathione Peroxidase/analysis , Glutathione Reductase/analysis , Glutathione Transferase/analysis , Male , Oxidative Stress , Rats , Rats, Wistar , Superoxide Dismutase/analysis
20.
High Alt Med Biol ; 10(1): 83-6, 2009.
Article in English | MEDLINE | ID: mdl-19278356

ABSTRACT

Chen, Chi-Hsien, Yuh-Feng Liu, Shin-Da Lee, Wen-Chih Lee, Ying-Lan Tsai, Chien-Wen Hou, Chih-Yang Huang, and Chia-Hua Kuo. Altitude hypoxia increases glucose uptake in human heart. High Alt. Med Biol. 10:83-86, 2009.-Cardiac muscle is a highly oxygenated tissue that produces ATP mainly from fat oxidation. However, when the rate of oxygen demand exceeds oxygen supply, energy reliance on the carbohydrate substrate becomes crucial for sustaining normal cardiac function. In this study, the effect of acute altitude hypoxia on glucose uptake from circulation was determined, for the first time, in the human heart, using [18F]-2-deoxy-2-fluoro-D-glucose positron emission tomography (FDG-PET) in a simulated altitude condition (14% O(2), corresponding to approximately 3000 m above sea level) or room air (21% O(2)). Our results showed that subjects (n = 6) started to experience difficulty in sustaining the hypoxic condition at approximately 45 min. This was concurrent with a substantially increased blood lactate concentration, which reflects an accelerated rate of anaerobic glycolysis. Hypoxia elevated FDG uptake above control by approximately 70% in heart, but not in limbs (representing primarily skeletal muscle), brain, and liver. This study provides the first human evidence for the hypoxia-stimulated glucose uptake in heart. At this hypoxia level, the previously observed hypoxia-stimulated glucose uptake in rat skeletal muscle was not confirmed in the human study.


Subject(s)
Altitude , Fluorodeoxyglucose F18/pharmacokinetics , Glucose/metabolism , Hypoxia/metabolism , Myocardium/metabolism , Radiopharmaceuticals/pharmacokinetics , Adult , Heart/diagnostic imaging , Humans , Lactic Acid/blood , Male , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...