Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819949

ABSTRACT

In the preparation of carbon dots (CDs), precursors are crucial, and abundant precursors endow CDs with various structures and fluorescence characteristics. Furan (FU) and its derivatives are considered excellent carbonization materials due to their π conjugated structures and active functional groups, such as hydroxyl and aldehyde groups. Herein, we prepare FU-derivative-based CDs by a solvothermal method and investigate the influences of the precursor structure on the fluorescence characteristics. Surprisingly, CDs prepared from 5-hydroxymethylfurfural (HMF) with both aldehyde and hydroxyl groups exhibit red-shifted fluorescence characteristics in the solid state. We postulate that this solid-state fluorescence characteristic is due to the enhancement of supramolecular cross-linking fluorescence between CDs. The unique precursor structure leads to carboxyl groups on the surface of HMF-CDs that are conducive to the hydrogen bond formation. As the concentration of CDs increases, the hydrogen bonding effect increases, leading to a red-shift in the fluorescence wavelength. Therefore, basically full-color CDs/poly(vinyl alcohol) (PVA) phosphor-based light-emitting diodes can be achieved by controlling the degree of supramolecular cross-linking of CDs in PVA. This research provides a new approach for the preparation of solid-state luminescent CDs.

2.
Nanoscale Adv ; 6(8): 1997-2001, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38633051

ABSTRACT

Herein, F-doped CDs with bright red SSF were synthesized by a solvothermal method using trifluoroethanol as the solvent and m-hydroxybenzaldehyde as the carbon source. Strong F-F interactions are vital for inducing crystallization, and solid luminescence is achieved by blocking the nonradiative energy dissipation pathways of crystalline organizations.

3.
Int J Biol Macromol ; 264(Pt 1): 130020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336332

ABSTRACT

Wood-based panels find widespread application in the furniture and construction industries. However, over 90 % of adhesives used are synthesized with formaldehyde, leading to formaldehyde emission and associated health risks. In this study, an entirely bio-based adhesive (OSL) was innovatively proposed through the condensation of multi-aldehyde derived from the oxidization of sucrose (OS) with sodium lignosulfonate (L). This approach positioned oxidized sucrose (OS) as a viable substitute for formaldehyde, ensuring safety, simplicity, and enhance water resistance upon reaction with L. The optimization of the OSL adhesive preparation process involved determining the oxidant level for high sucrose conversion to aldehyde (13 % based on sucrose), the mass ratio of OS to L (0.8), and hot-pressing temperature (200 °C). Notably, the shear strength of 3-plywood bonded with the developed adhesive (1.04 MPa) increased to 1.42 MPa after being immersed in hot water at 63 ±â€¯3 °C for 3 h. Additionally, the plywood specimens exhibited excellent performance after soaking in boiling water for 3 h, resulting in a shear strength of 1.03 MPa. Chemical analysis using Fourier-transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed an addition reaction between L and OS, forming a dense network structure, effectively enhanceing the water resistance of OSL adhesives. Furthermore, compared with lignin-formaldehyde resin adhesive (LF), the OSL adhesive exhibited superior wet shear strength. This study offered an innovative approach for developing lignin-based adhesives utilizing a biomass aldehyde (OS), as a promising substitute for formaldehyde in the wood industry. The findings indicated that this approach may advance lignin-based adhesives, ensuring resistance to strength deterioration under highly humid environmental conditions.


Subject(s)
Lignin , Water , Lignin/chemistry , Aldehydes , Adhesives/chemistry , Formaldehyde/chemistry , Sucrose
4.
ACS Appl Mater Interfaces ; 16(7): 9182-9189, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38343193

ABSTRACT

Carbon dots (CDs) are new carbon nanomaterials, among which those prepared from biomass are popular due to their excellent optical properties and environmental friendliness. As representative natural phenolic compounds, tea polyphenols are ideal precursors with fluorescent aromatic rings and phenolic hydroxyl structures. Usually, polyphenolic precursors can only be used to produce blue or green fluorescent CDs, and fluorescence in long wavelength domains, such as orange or red, cannot be achieved. Herein, the high reactivity of the phenolic hydroxyl groups in tea polyphenols with o-phthalaldehyde was exploited to modulate the pH during the carbonation process, which led to redshifts of the fluorescence wavelengths. Different pH values during the reaction caused the precursors to take different reaction paths and form fluorescent groups exhibiting different conjugated structures, resulting in carbon dots providing different fluorescent colors. Finally, by utilizing the in situ hydrolysis of ethyl orthosilicate, the tea polyphenol-based carbon dots were embedded into a silica matrix, inducing phosphorescence of the carbon dots. This study provides a new approach for green preparation and application of natural polyphenolic CDs.

5.
Biomacromolecules ; 25(3): 1923-1932, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38394470

ABSTRACT

Fatty acid cellulose esters (FACE) are common cellulose-based thermoplastics, and their thermoplasticity is determined by both the contents and the lengths of the side chains. Herein, various FACE were synthesized by the ball-milling esterification of cellulose and fatty acyl chlorides containing 10-18 carbons, and their structures and thermoplasticity were thoroughly studied. The results showed that FACE with high degrees of substitution (DS) and low melting flow temperatures (Tf) were achieved as the chain lengths of the fatty acyl chlorides were reduced. In particular, a cellulose decanoate with a DS of 1.85 and a Tf of 186 °C was achieved by feeding 3 mol of decanoyl chloride per mole anhydroglucose units of cellulose. However, cellulose stearate (DS = 1.53) synthesized by the same protocols cannot melt even at 250 °C. More interestingly, the fatty acyl chlorides with 10 and 12 carbons resulted in FACE with superior toughness (elongation at break up to 94.4%). In contrast, due to their potential crystallization of the fatty acyl groups with 14-18 carbons, the corresponding FACE showed higher tensile strength and Young's modulus than the others. This study provides some theoretical basis for the mechanochemical synthesis of thermoplastic FACE with designated properties.


Subject(s)
Chlorides , Esters , Esters/chemistry , Feasibility Studies , Esterification , Cellulose/chemistry
6.
Int J Biol Macromol ; 253(Pt 6): 127135, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37802444

ABSTRACT

Despite the widespread application prospect of soybean meal flour (SF) as a non-toxic and renewable wood adhesive, the practical application is limited by its poor mechanical properties and water resistance. In this work, a novel SF-based wood adhesive (CSP) was developed using citric acid (CA) as a modifier, which was further designated to produce plywood on a laboratory scale. Moreover, the effects of the mass ratio of CA/SF, hot-pressing temperature, and hot-pressing time on the bonding properties and water resistance of the resulting plywood were investigated in detail. As a result, under the optimal hot-pressing conditions (180 °C, 5 min), high-performance plywood bonded by CSP (CA/SF = 15/100) adhesive was fabricated, whose dry shear strength, cold-water wet shear strength (20 °C for 24 h), and hot-water wet shear strength (63 °C for 3 h) reached 1.65 MPa, 1.99 MPa, and 1.58 MPa, respectively. Due to the easy preparation process, sustainability, and favorable properties, the proposed fully bio-based CSP wood adhesive has great potential for the large-scale fabrication of eco-friendly wood panels in industry.


Subject(s)
Soybean Proteins , Wood , Glycine max , Flour , Citric Acid , Water
7.
Bioresour Technol ; 388: 129746, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689119

ABSTRACT

In this study, impregnation combined with KOH activation with different mixing methods was used to prepare magnetic biochar. The effects of synthetic method on biochar physicochemical properties and adsorption performance were explored. The results showed that treatment of a Fe-Zn oxide with KOH activation provided excellent adsorption properties with adsorption capacity of 458.90 mg/g due to well-developed microporous structure and rich-in O-containing functional groups as well as exposed oxidizing functional groups (Fe2O3 and FeOOH). Langmuir-Freundlich and pseudo-second-order models accurately fit phenol adsorption. Neutral conditions (pH = 6) and lower ionic strengths were beneficial to phenol removal. Additionally, the predominant adsorption processes were physisorption and chemisorption. Correlation analyses and characterization data confirmed that pore filling, π-π interactions and surface complexation were the dominant driving forces for phenol adsorption. This research provides an environmentally friendly method for utilizing agricultural wastes for the removal of a variety of pollutions from aquatic environment.

8.
Int J Biol Macromol ; 248: 125889, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37479199

ABSTRACT

Starch adhesive, as a sustainable biomass-based adhesive, could be used to solve environmental problems from petroleum-derived adhesive. But its application is hindered by poor water resistance, mildew resistance, and storage stability. Here, a fully bio-based citric acid-starch adhesive (CASt) with high properties was successfully introduced by a simple method. Liquid chromatography/mass spectrometry (LC-MS), and Fourier Transform Infrared spectroscopy (FT-IR) determined that esterification of citric acid (CA) and starch (St) occurred to form a stable three-dimensional crosslinking structure, which strengthened water resistance and bonding strength of the starch adhesive. Compared with native starch (100 %), the soluble content of cured CASt was 1-16 %. CASt adhesive has well storage stability and high mildew resistance. Even after being stored for 5 months, the CASt-1 adhesive (mass ratio of CA/St = 1:1, and reaction time = 1 h) still have good liquidity. And its hot water strength (1.05 ± 0.22 MPa) also satisfied the standard requirements (≥0.7 MPa). The exhibited CASt adhesive is eco-friendly with components from plant resources, which performed as a bright alternative that can substitute petroleum-based adhesives in the artificial board industry.


Subject(s)
Adhesives , Starch , Starch/chemistry , Adhesives/chemistry , Water/chemistry , Spectroscopy, Fourier Transform Infrared , Citric Acid
9.
Molecules ; 28(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513177

ABSTRACT

As the foremost category of carbon materials, carbon dots (CDs) have been extensively applied in many domains because of their special fluorescence features and outstanding biocompatibility. However, in early studies of fluorescent CDs, as the fluorescence wavelength of most CDs was restricted to the blue or green region and was excitation dependent, the application of CDs was limited. In this study, three representative CDs, fluorescing yellow, green, and blue, were synthesized under alkaline, neutral, and acidic circumstances, respectively, while using a hydrothermal method in which catechol and phthalaldehyde acted as carbon sources and methanol functioned as the reaction solvent. The carbon nuclei of the three fluorescent CDs all had comparable graphite structures. The diversity of photoluminescence (PL) emission from these three CDs was attributed mainly to the different sizes of the sp2 conjugated structures among them. Mixing synthesized CDs with epoxy resin, three colors (yellow, green, and blue) of LED using CIE coordinates (0.40, 0.44), (0.33, 0.46), and (0.21, 0.22), respectively, were successfully prepared.

10.
Environ Pollut ; 331(Pt 1): 121871, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37225081

ABSTRACT

In this study, a novel nitrogen-doped magnetic Fe-Ca codoped biochar for phenol removal was successfully fabricated via a hydrothermal and coactivation pyrolysis method. A series of adsorption process parameters (K2FeO4 to CaCO3 ratio, initial phenol concentration, pH value, adsorption time, adsorbent dosage and ion strength) and adsorption models (kinetic models, isotherms and thermodynamic models) were determined using batch experiments and various analysis techniques (XRD, BET, SEM-EDX, Raman spectroscopy, VSM, FTIR and XPS) to investigate the adsorption mechanism and metal-nitrogen-carbon interaction. The biochar with a ratio of Biochar: K2FeO4: CaCO3 = 3:1:1 exhibited superior properties for adsorption of phenol and had a maximum adsorption capacity of 211.73 mg/g at 298 K, C0 = 200 mg/L, pH = 6.0 and t = 480 min. These excellent adsorption properties were due to superior physicomechanical properties (a large specific surface area (610.53 m2/g) and pore volume (0.3950 cm3/g), a well-developed pore structure (hierarchical), a high graphitization degree (ID/IG = 2.02), the presence of O/N-rich functional groups and Fe-Ox,Ca-Ox, N-doping, as well as synergistic activation by K2FeO4 and CaCO3). The Freundlich and pseudo-second-order models effectively fit the adsorption data, indicating multilayer physicochemical adsorption. Pore filling and π-π interactions were the predominant mechanisms for phenol removal, and H-bonding interactions, Lewis-acid-base interactions, and metal complexation played an important role in enhancing phenol removal. A simple, feasible approach with application potential to organic contaminant/pollutant removal was developed in this study.


Subject(s)
Phenol , Water Pollutants, Chemical , Phenol/analysis , Nitrogen/analysis , Porosity , Water Pollutants, Chemical/analysis , Phenols/analysis , Charcoal/chemistry , Adsorption , Kinetics , Magnetic Phenomena
11.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047390

ABSTRACT

Lignin has many potential applications and is a biopolymer with a three-dimensional network structure. It is composed of three phenylpropane units, p-hydroxyphenyl, guaiacyl, and syringyl, connected by ether bonds and carbon-carbon bonds, and it contains a large number of phenol or aldehyde structural units, resulting in complex lignin structures. This limits the application of lignin. To expand the application range of lignin, we prepared lignin thermoplastic phenolic resins (LPRs) by using lignin instead of phenol; these LPRs had molecular weights of up to 1917 g/mol, a molecular weight distribution of 1.451, and an O/P value of up to 2.73. Due to the complex structure of the lignin, the synthetic lignin thermoplastic phenolic resins were not very tough, which greatly affected the performance of the material. If the lignin phenolic resins were toughened, their application range would be substantially expanded. Polybutylene succinate (PBS) has excellent processability and excellent mechanical properties. The toughening effects of different PBS contents in the LPRs were investigated. PBS was found to be compatible with the LPRs, and the flexible chain segments of the small PBS molecules were embedded in the molecular chain segments of the LPRs, thus reducing the crystallinities of the LPRs. The good compatibility between the two materials promoted hydrogen bond formation between the PBS and LPRs. Rheological data showed good interfacial bonding between the materials, and the modulus of the high-melting PBS made the LPRs more damage resistant. When PBS was added at 30%, the tensile strength of the LPRs was increased by 2.8 times to 1.65 MPa, and the elongation at break increased by 31 times to 93%. This work demonstrates the potential of lignin thermoplastic phenolic resins for industrial applications and provides novel concepts for toughening biobased aromatic resins with PBS.


Subject(s)
Biocompatible Materials , Lignin , Lignin/chemistry , Biocompatible Materials/chemistry , Phenols , Resins, Synthetic
12.
Adv Sci (Weinh) ; 10(18): e2300543, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37085685

ABSTRACT

Reported in 2004, carbon dots (CDs) have been widely used in various fields due to their excellent optical properties. However, the mechanism of their fluorescence modulation is still a controversial issue, which also seriously affects the further development of carbon dots. In this paper, m-hydroxybenzaldehyde is used as a raw material to obtain multicolor luminescent CDs by pyrolysis under different reaction conditions, thereby revealing the forbidden band tuning and formation mechanism of CDs. Different acid-base conditions lead to different reaction paths of the precursors, forming molecular fluorophores with different conjugated structures, which aggregate to eventually form CDs and further enhance the photoluminescence of the system by inhibiting the movement of the fluorescent centers.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Fluorescence
13.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499058

ABSTRACT

Juice, as a liquid foodstuff, is subject to spoilage and damage due to complications during transport and storage. The appearance of intact outer packaging often makes spoilage and damage difficult to detect. Therefore, it of particular importance to develop a fast, real-time material to evaluate liquid foodstuffs. In this paper, starch films with pH response characteristics are successfully prepared by inorganic ion modification by utilizing whole starch and amylopectin as raw materials. The mechanical properties, stability properties, hydrophilic properties and pH electrical signal response indices of the films are analyzed and measured. The films exhibit good electrical conductivity values with 1.0 mL of ion addition (10 mmol/L), causing the composite film to respond sensitively to solutions with varying pH values. In the test of spoiled orange juice, the full-component corn starch (CS) film has more sensitive resistance and current responses, which is more conducive for applications in the quality monitoring of juice. The results indicate that modified starch films can potentially be applied in the real-time monitoring of the safety of liquid foodstuffs.


Subject(s)
Fruit and Vegetable Juices , Starch , Starch/chemistry , Amylopectin , Food Packaging/methods , Food
14.
Carbohydr Polym ; 298: 120157, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36241310

ABSTRACT

Bio-based biodegradable resin was prepared by condensation of gelatinized starch and furfuryl alcohol, in presence of glyoxal as crosslinker. The resin was blown with different foaming agents and/or flame retardants such as phosphoric or boric acids, to produce environmentally friendly foam structures, given the bio-based nature of the main components, which are both derived from corn. Scanning electron microscopy (SEM) imaging of the samples revealed closed cell structure with a smooth surface. The excellent pulverization ratio and appreciable compression strength compared with the phenol-formaldehyde (PF)-based foam, render them strong candidates for building materials. Different investigations proved characteristics such as low thermal conductivity, good stability against thermal degradation and high limiting oxygen index (LOI) values, support the liability of such structures for application as heat insulating and fire-resistive materials.


Subject(s)
Flame Retardants , Starch , Boric Acids , Calcium Phosphates , Construction Materials , Formaldehyde , Glyoxal , Oxygen , Phenols , Starch/chemistry
15.
J Int Med Res ; 50(5): 3000605221100768, 2022 May.
Article in English | MEDLINE | ID: mdl-35635338

ABSTRACT

Primary hepatic stromal tumours are very rare and there are only sporadic reports in the literature. Due to the lack of specificity in their clinical manifestations and imaging features, these tumours are easily misdiagnosed. This current report presents a case of primary liver stromal tumour that was misdiagnosed as a liver cyst. The 72-year-old male patient was admitted to the hospital due to right upper abdomen fullness and discomfort for more than 2 weeks. Colour Doppler ultrasonography and enhanced computed tomography examinations revealed a cystic mass in the right lobe of the liver. The preoperative diagnosis was a liver cyst and the laparoscopic fenestration was performed. The pathological examination demonstrated that it was a primary hepatic stromal tumour. Gastroenteroscopy was performed postoperatively and no lesions were found in the gastrointestinal tract. Imatinib mesylate was given orally as the salvage therapy and a radical operation was planned at the patient's request. This current case serves as a reminder that clinicians should consider the possibility that it could be a primary hepatic stromal tumour rather than a hepatic cyst. A multidisciplinary team is necessary for the diagnosis and treatment of patients with a primary hepatic stromal tumour.


Subject(s)
Cysts , Liver Diseases , Aged , Cysts/diagnostic imaging , Cysts/surgery , Diagnostic Errors , Humans , Liver Diseases/diagnosis , Liver Diseases/surgery , Male
16.
Front Bioeng Biotechnol ; 10: 1099118, 2022.
Article in English | MEDLINE | ID: mdl-36686261

ABSTRACT

The integrity of the packaging of a liquid foodstuff makes it difficult to detect spoilage. Therefore, it is important to develop a sensitive, fast and real-time material for liquid food detection. CMC, as lignocellulose derivatives and starch are widely used in the food industry. In this study, starch films with pH-responsive properties are successfully prepared from full-component starch and corn amylopectin (CA) by adding CMC. The effects of CMC on the mechanical properties, morphology characteristics, physical and chemical structures, stability and pH responsiveness of the starch films are analyzed. The starch/CMC-1.0 g composite films display good electrical conductivity and reduce the resistance of the composite film by two orders of magnitude. The composite films have pH response ability; in the simulation of orange juice spoilage experiment, the CA/CMC composite film has a more sensitive current response and was more suitable for the application to liquid food quality detection. Additionally, the starch/CMC composite films have potential applications for rapid detection and real-time monitoring of the safety of liquid food.

17.
Int J Biol Macromol ; 161: 177-186, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32470582

ABSTRACT

Cellulose is an abundant feedstock with renewability and biodegradability. However, it is still challenging to manufacture natural cellulose products by environmentally friendly thermoplastic processing methods. Herein, we proposed a green approach for the heterogeneous preparation of thermoplastic cellulose grafted polyurethane (RCP-g-PU) from amorphous regenerated cellulose paste (RCP) via hydroxyl/isocyanate chemistry. First, amorphous RCP was fabricated through dissolving cellulose in sodium hydroxide aqueous solution and regenerating in polyethylene glycol, resulting in the enhancement of the accessibility of hydroxy groups in cellulose chains. Subsequently, a series of thermoplastic RCP-g-PU with the melt flow temperatures ranging from 160 °C to 226 °C were feasibly synthesized by adding hexamethylene diisocyanate into RCP without using other organic solvents. Eventually, the resultant RCP-g-PU can be directly hot-pressed into transparent films with flexibility and foldability. The reported methodology represents a sustainable route to achieve thermoplastic cellulose derivatives.


Subject(s)
Cellulose/chemistry , Polyurethanes/chemistry , Chemical Phenomena , Magnetic Resonance Spectroscopy , Mechanical Phenomena , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...