Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 14(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39123773

ABSTRACT

This study focuses on understanding the behavior and activity patterns of the critically endangered Protobothrops mangshanensis in China in order to better provide scientific data for upcoming artificial breeding and propagation efforts. We conducted a long-term observation of 15 Mangshan pit vipers at different sites in Hunan Province during the summer and autumn of 2021. Our methods involved analyzing the influence of environmental factors such as temperature, relative humidity, and light condition on the snakes' day and night activity and behaviors. The results revealed that the wild behaviors of Protobothrops mangshanensis include resting, sunbathing, crawling, and exploring, with distinct rhythms in their diel behavior. The snakes' diel activity exhibits three peak periods which may be related to food activity and sunbathing. This study also highlights the complex interplay of environmental factors on the activity of Protobothrops mangshanensis. Relative humidity was identified as a critical factor accounting for the difference in activity between observation groups. There was little inter-individual variation among the 15 Protobothrops mangshanensis, even though these snakes used terrestrial and arboreal habitats under different environmental conditions. These findings enhance our understanding of Protobothrops mangshanensis behavior and provide a basis for effective conservation measures for this rare and critically endangered species.

2.
Plants (Basel) ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765501

ABSTRACT

Drought stress is one of the major causes of crop losses. The WRKY families play important roles in the regulation of many plant processes, including drought stress response. However, the function of individual WRKY genes in plants is still under investigation. Here, we identified a new member of the WRKY families, OsWRKY97, and analyzed its role in stress resistance by using a series of transgenic plant lines. OsWRKY97 positively regulates drought tolerance in rice. OsWRKY97 was expressed in all examined tissues and could be induced by various abiotic stresses and abscisic acid (ABA). OsWRKY97-GFP was localized to the nucleus. Various abiotic stress-related cis-acting elements were observed in the promoters of OsWRKY97. The results of OsWRKY97-overexpressing plant analyses revealed that OsWRKY97 plays a positive role in drought stress tolerance. In addition, physiological analyses revealed that OsWRKY97 improves drought stress tolerance by improving the osmotic adjustment ability, oxidative stress tolerance, and water retention capacity of the plant. Furthermore, OsWRKY97-overexpressing plants also showed higher sensitivity to exogenous ABA compared with that of wild-type rice (WT). Overexpression of OsWRKY97 also affected the transcript levels of ABA-responsive genes and the accumulation of ABA. These results indicate that OsWRKY97 plays a crucial role in the response to drought stress and may possess high potential value in improving drought tolerance in rice.

3.
Zootaxa ; 5323(1): 147-150, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37518194
4.
Mitochondrial DNA B Resour ; 7(4): 705-706, 2022.
Article in English | MEDLINE | ID: mdl-35493717

ABSTRACT

Syzygium odoratum (Lour.) DC. 1828 is a deciduous shrub in the family Myrtaceae. This species grows in sparse forests, especially in mountains, valleys, and broad-leaved evergreen forests along streams from 100 to 400 m above sea level. The primary distribution is in southern China (e.g. Guangdong, Guangxi, Hainan, etc.) and other south Asian countries (e.g. Vietnam). Here, we report and characterize the complete plastome from a cultivar of S. odoratum (Lour.) DC. 1828. The complete plastome is 159,352 bp in length with a typical structure and gene content found in angiosperms, including two inverted repeat regions (IRs) of 26,472 bp, a large single-copy (LSC) region of 87,993 bp, and a small single-copy (SSC) region of 18,415 bp. The plastome contains 132 genes, consisting of 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The overall G/C content in the plastome of S. odoratum is 36.9%. By inferring phylogenetic relationships based on the existing data of related taxa, we find that S. odoratum is most closely related to Syzygium acuminatissimum, (Blume) DC. 1828 given the current sampling. The complete plastome sequence of S. odoratum will provide a useful resource for conservation genetics of this species, as well as for phylogenetic studies involving Myrtaceae.

5.
Sci Total Environ ; 829: 154605, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35307415

ABSTRACT

Biochar is known to accelerate composting process and improve the quality of end-products. However, its effects on bioconversion of organic waste by black soldier fly larvae (BSFL) remains largely unexamined. To investigate the effects of corn straw biochar (CS-BC) on bioconversion of soybean dregs (SD) by BSFL, SD was amended with four different dosages of CS-BC [0%, 2%, 5%, and 8% (w/w)] and digested by BSFL for ten days. The results indicated that the peak values of single larva wet weight in the treatments amended with CS-BC were advanced by 2-3 days and the reduction rate of SD increased from 72.09% to 85.37% with the increasing dosage of CS-BC. Meanwhile, SD mixed with 2%, 5% and 8% of CS-BC decreased ammonia (NH3) emission by 2.7%, 3.6% and 18.0%, respectively. The nitrous oxide (N2O) emissions reduced (-23.6%, -29.1% and -49.2%) with 2%, 5% and 8% CS-BC additions, respectively. In addition, the residual nitrogen of SD­nitrogen proportionally increased with CS-BC application (28.3%, 28.6%, 30.1% and 35.0% for application at the dosage of 0%, 2%, 5% and 8%, respectively). Based on the comprehensive evaluation of bioconversion performance, alleviation of pollutant gas emission, and nitrogen conservation, we recommend the introduction of 8% (w/w) CS-BC during bioconversion of SD by BSFL. This study confirmed the feasibility of CS-BC as an amendment for the BSFL-based bioconversion system.


Subject(s)
Composting , Diptera , Animals , Charcoal , Larva , Nitrogen , Glycine max
6.
Environ Sci Pollut Res Int ; 27(34): 42767-42777, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32720023

ABSTRACT

Currently, sustainable utilization, including recycling and valorization, is becoming increasingly popular in waste management. Black soldier fly larvae (BSFL) can convert the carbon (C) and nitrogen (N) from organic waste into biomass and improve properties of the substrate to reduce greenhouse gas and NH3 emissions. In this study, the recycling of C and N and the emissions of greenhouse gas and NH3 during BSFL bio-treatment of mixtures of pig manure and corncob were investigated under different C/N ratios. The results indicated that initial C/N ratios of feedstock are a crucial parameter affecting the biomass generation of larvae. The BSFL recycled approximately 4.17-6.61% of C and 17.45-23.73% of N from raw materials under different C/N ratios. Cumulative CO2, CH4, NH3, and N2O emissions at the different C/N ratios ranging from 15 to 35 were 107.92-151.68, 0.08-0.76, 0.14-1.17, and 0.91-1.18 mg kg-1, respectively. Compared with conventional composting, BSFL treatment could reduce the total greenhouse gas emissions by over 90%. The study showed that bio-treatment of mixtures of pig manure and corncob with a proper C/N ratio by BSFL could become an avenue to achieve higher nutrient recycling, which is an eco-friendly process.


Subject(s)
Composting , Greenhouse Gases , Simuliidae , Animals , Carbon , Manure , Nitrogen , Swine
7.
J Environ Manage ; 260: 110066, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31941627

ABSTRACT

Currently, sustainable utilisation, including recycling and valorisation, is becoming increasingly relevant in environmental management. The wastes bioconversion by the black soldier fly larva (BSFL) has two potential advantages: the larvae can convert the carbon and nitrogen in the biomass waste, and improve the properties of the substrate to reduce the loss of gaseous carbon and nitrogen. In the present study, the conversion rate of carbon, nitrogen and the emissions of greenhouse gases and NH3 during BSFL bio-treatment of food waste were investigated under different pH conditions. The results showed that the pH of the raw materials is a pivotal parameter affecting the process. The average wet weight of harvested BSFL was 13.26-95.28 mg/larva, with about 1.95-13.41% and 5.40-18.93% of recycled carbon and nitrogen from substrate at a pH from 3.0 to 11.0, respectively. Furthermore, pH is adversely correlated with CO2 emissions, but positively with NH3 emissions. Cumulative CO2, NH3, CH4 and N2O emissions at pH ranging from 3.0 to 11.0 were 88.15-161.11 g kg-1, 0.15-1.68 g kg-1, 0.19-2.62 mg kg-1 and 0.02-1.65 mg kg-1, respectively. Compared with the values in open composting, BSFL bio-treatment of food waste could lead greenhouse gas (especially CH4 and N2O) and NH3 emissions to decrease. Therefore, a higher pH value of the substrate can increase the larval output and help the mitigation of greenhouse gas emissions.


Subject(s)
Greenhouse Gases , Refuse Disposal , Simuliidae , Animals , Carbon , Carbon Dioxide , Food , Methane , Nitrogen
8.
Sci Total Environ ; 697: 133840, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31487598

ABSTRACT

The effects of different moisture contents on greenhouse gas (GHG) emissions from pig manure (PM) digested by black soldier fly larvae (BSFL) as well as the accompanying changes of nitrogen and carbon contents in gaseous emissions and residues were studied. A mixture of PM and corncob at the ratio of 2.2:1 was prepared with a moisture content of 45%. Then, distilled water was added to adjust the moisture contents of the mixture to 55%, 65%, 75% and 85%, respectively. The prepared mixtures were digested by BSFL for eight days. The results indicated that BSFL could reduce CH4, N2O and NH3 emissions respectively by 72.63-99.99%, 99.68%-99.91% and 82.30-89.92%, compared with conventional composting, while CO2 emissions increased potentially due to BSFL metabolism. With increasing moisture content, the cumulative CH4 emissions increased, while cumulative NH3 emissions peaked at 55% moisture content and then decreased. Interestingly, the tendency of total cumulative CO2 emissions was consistent with that of the total weight of BSFL. The total GHG emissions were about only 1% those from of traditional composting at the optimum moisture content (75%), which was the most favorable for the growth of BSFL. The nitrogen and carbon contents of BSFL content in all treatments accounted for 1.03%-12.67% and 0.25%-4.68% of the initial contents in the raw materials, respectively. Moreover, the residues retained 71.12%-90.58% carbon and 67.91%-80.39% nitrogen of the initial raw materials. Overall, our results suggest that BSFL treatment is an environment-friendly alternative for decreasing CH4, N2O and NH3 emissions as well as reducing global warming potential (GWP).


Subject(s)
Composting , Greenhouse Gases/analysis , Manure , Methane/analysis , Simuliidae/physiology , Animals , Fertilizers , Nitrogen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL