Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 10: 1016854, 2022.
Article in English | MEDLINE | ID: mdl-36407985

ABSTRACT

Background: In 2019, there were 28. 76 million patients with stroke in China, with ~25% of them suffering from cryptogenic stroke (CS). Patent foramen ovale (PFO) is related to CS, and PFO closure can reduce recurrent stroke. To date, no study has investigated the cost-effectiveness of PFO closure vs. medical therapy among such populations in China. Methods: A Markov model with a cycle length of 3 months was established to compare the 30-year cost-effectiveness of PFO closure and medical therapy. The transition probability of recurrent stroke was derived from the RESPECT study, and the costs and utility were obtained from domestic data or studies conducted in China. The primary outcome of this study was the incremental cost-effectiveness ratio (ICER), which represents the incremental cost per quality-adjusted life year (QALY). PFO closure was considered cost-effective if the ICER obtained was lower than the willingness-to-pay (WTP) threshold of 37,654 USD/QALY; otherwise, PFO closure was regarded as not being cost-effective. One-way and probabilistic sensitivity analyses were performed to test the robustness of the results. Results: After a simulation of a 30-year horizon, a cryptogenic stroke patient with PFO was expected to have QALY of 13.15 (15.26 LY) if he received PFO closure and a corresponding value of 11.74 QALY (15.14 LY) after medical therapy. The corresponding costs in both cohorts are US $8,131 and US $4,186, respectively. Thus, an ICER of 2783 USD/QALY and 31264 USD/LY was obtained, which is lower than the WTP threshold. One-way and probabilistic sensitivity analyses showed that the results were robust. Conclusion: With respect to the WTP threshold of three times per capita GDP in China in 2021, PFO closure is a cost-effective method for Chinese cryptogenic stroke patients with PFO, as shown in the 30-year simulation.


Subject(s)
Foramen Ovale, Patent , Ischemic Stroke , Stroke , Humans , Male , Foramen Ovale, Patent/surgery , Cost-Benefit Analysis , Stroke/therapy , China/epidemiology
2.
Front Genet ; 13: 870222, 2022.
Article in English | MEDLINE | ID: mdl-36204316

ABSTRACT

Aim: Coronary artery disease (CAD) is a heterogeneous disorder with high morbidity, mortality, and healthcare costs, representing a major burden on public health. Here, we aimed to improve our understanding of the genetic drivers of ferroptosis and necroptosis and the clustering of gene expression in CAD in order to develop novel personalized therapies to slow disease progression. Methods: CAD datasets were obtained from the Gene Expression Omnibus. The identification of ferroptosis- and necroptosis-related differentially expressed genes (DEGs) and the consensus clustering method including the classification algorithm used km and distance used spearman were performed to differentiate individuals with CAD into two clusters (cluster A and cluster B) based expression matrix of DEGs. Next, we identified four subgroup-specific genes of significant difference between cluster A and B and again divided individuals with CAD into gene cluster A and gene cluster B with same methods. Additionally, we compared differences in clinical information between the subtypes separately. Finally, principal component analysis algorithms were constructed to calculate the cluster-specific gene score for each sample for quantification of the two clusters. Results: In total, 25 ferroptosis- and necroptosis-related DEGs were screened. The genes in cluster A were mostly related to the neutrophil pathway, whereas those in cluster B were mostly related to the B-cell receptor signaling pathway. Moreover, the subgroup-specific gene scores and CAD indices were higher in cluster A and gene cluster A than in cluster B and gene cluster B. We also identified and validated two genes showing upregulation between clusters A and B in a validation dataset. Conclusion: High expression of CBS and TLR4 was related to more severe disease in patients with CAD, whereas LONP1 and HSPB1 expression was associated with delayed CAD progression. The identification of genetic subgroups of patients with CAD may improve clinician knowledge of disease pathogenesis and facilitate the development of methods for disease diagnosis, classification, and prognosis.

3.
Front Immunol ; 13: 907309, 2022.
Article in English | MEDLINE | ID: mdl-35769488

ABSTRACT

Identifying biomarkers for abdominal aortic aneurysms (AAA) is key to understanding their pathogenesis, developing novel targeted therapeutics, and possibly improving patients outcomes and risk of rupture. Here, we identified AAA biomarkers from public databases using single-cell RNA-sequencing, weighted co-expression network (WGCNA), and differential expression analyses. Additionally, we used the multiple machine learning methods to identify biomarkers that differentiated large AAA from small AAA. Biomarkers were validated using GEO datasets. CIBERSORT was used to assess immune cell infiltration into AAA tissues and investigate the relationship between biomarkers and infiltrating immune cells. Therefore, 288 differentially expressed genes (DEGs) were screened for AAA and normal samples. The identified DEGs were mostly related to inflammatory responses, lipids, and atherosclerosis. For the large and small AAA samples, 17 DEGs, mostly related to necroptosis, were screened. As biomarkers for AAA, G0/G1 switch 2 (G0S2) (Area under the curve [AUC] = 0.861, 0.875, and 0.911, in GSE57691, GSE47472, and GSE7284, respectively) and for large AAA, heparinase (HPSE) (AUC = 0.669 and 0.754, in GSE57691 and GSE98278, respectively) were identified and further verified by qRT-PCR. Immune cell infiltration analysis revealed that the AAA process may be mediated by T follicular helper (Tfh) cells and the large AAA process may also be mediated by Tfh cells, M1, and M2 macrophages. Additionally, G0S2 expression was associated with neutrophils, activated and resting mast cells, M0 and M1 macrophages, regulatory T cells (Tregs), resting dendritic cells, and resting CD4 memory T cells. Moreover, HPSE expression was associated with M0 and M1 macrophages, activated and resting mast cells, Tregs, and resting CD4 memory T cells. Additional, G0S2 may be an effective diagnostic biomarker for AAA, whereas HPSE may be used to confer risk of rupture in large AAAs. Immune cells play a role in the onset and progression of AAA, which may improve its diagnosis and treatment.


Subject(s)
Aortic Aneurysm, Abdominal , Cell Cycle Proteins , Glucuronidase , Machine Learning , Aortic Aneurysm, Abdominal/diagnosis , Aortic Aneurysm, Abdominal/metabolism , Biomarkers/metabolism , Cell Cycle Proteins/metabolism , Glucuronidase/metabolism , Heparin Lyase/metabolism , Humans , Macrophages/metabolism
4.
Oxid Med Cell Longev ; 2022: 6184802, 2022.
Article in English | MEDLINE | ID: mdl-35480868

ABSTRACT

Background: Stanford type A aortic dissection (TAAD) is one of the most life-threatening cardiovascular emergencies with high mortality and morbidity, and necroptosis is a newly identified type of programmed cell death and contributes to the pathogenesis of various cardiovascular diseases. However, the role of necroptosis in TAAD has not been elucidated. This study was aimed at determining the role of necroptosis in TAAD using bioinformatics analyses. Methods: The RNA sequencing dataset GSE153434 and the microarray dataset GSE52093 were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes of necroptosis (NRDEGs) were identified based on differentially expressed genes (DEGs) and necroptosis gene set. Gene set enrichment analysis (GSEA) was applied to evaluate the gene enrichment signaling pathway in TAAD. The STRING database and Cytoscape software were used to establish and visualize protein-protein interaction (PPI) networks and identify the key functional modules of NRDEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of NRDEGs were also performed. Additionally, Spearman correlations were used to construct the necroptosis-related transcription factor-target genes regulatory network, immune infiltration patterns were analyzed using the ImmuCellAI algorithm, and the correlation between immune cell-type abundance and NRDEGs expression was investigated. The expression levels of NRDEGs and immune infiltration were additionally verified in the GSE52093 dataset. Results: We found that the necroptosis pathway was considerably enriched and activated in TAAD samples. Overall, 25 NRDEGs were identified including MLKL, RIPK1, and FADD, and among them, 18 were verified in the validation set. Moreover, GO and KEGG enrichment analyses found that NRDEGs were primarily involved in the tumor necrosis factor signaling pathway, nucleotide-binding oligomerization domain-like receptor signaling pathway, and interleukin-17 signaling pathway. The imbalance of Th17/Treg cells was identified in the TAAD samples. Furthermore, correlation analysis indicated that expression of NRDEGs was positively associated with proinflammatory immune-cell infiltrations and negatively associated with anti-inflammatory or regulatory immune-cell infiltrations. Conclusions: The present findings suggest that necroptosis phenomenon exists in TAAD and correlates with immune cell infiltration, which indicate necroptosis may promote the development of TAAD through activating immune infiltration and immune response. This study paves a new road to future investigation of the pathogenic mechanisms and therapeutic strategies for TAAD.


Subject(s)
Aortic Dissection , Computational Biology , Aortic Dissection/genetics , Gene Expression Profiling , Gene Ontology , Humans , Necroptosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...