Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Eur J Obstet Gynecol Reprod Biol ; 295: 219-227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387304

ABSTRACT

INTRODUCTION: Premature menopause is a major complication of primary ovarian insufficiency (POI), and this loss is closely relates to bone mineral density (BMD). Previous research has indicated potential associations between BMD and POI. This study set out to provide the first systematic literature review and meta-analysison account of BMD content among women with POI. METHODS: Studies including women with POI and controls were eligible from PubMed, Embase, Cochrane Library and Web of Science databases (from their inception to April 2022). Two reviewers independently evaluated study eligibility. The meta-analysis was performed using the DerSimonian and Laird random effects model. RESULTS: Ten studies featuring 578 women with POI and 480 controls were selected. BMD content of femur neck (SMD:-0.76; 95 % CI: -1.20 to -0.31; P = 0.0008), the BMD content of nondominating forearm (SMD:-0.67; 95 % CI: -1.15 to -0.18; P = 0.007) were significantly decreased in women with POI. However, no differences were seen in other regions (lumbar spine, total hip, hipneck). DISCUSSION: The results of this study indicate that BMD content altered in patients with primary ovarian insufficiency. An implication of this is the possibility that hormone replacement therapy to minimize the prevalence of fracture morbidity and mortality associated with osteopenia in patients with POI.


Subject(s)
Fractures, Bone , Osteoporosis, Postmenopausal , Primary Ovarian Insufficiency , Humans , Female , Bone Density , Primary Ovarian Insufficiency/complications , Hormone Replacement Therapy
2.
Drug Des Devel Ther ; 17: 3723-3748, 2023.
Article in English | MEDLINE | ID: mdl-38107658

ABSTRACT

Purpose: This study aimed to investigate the main pharmacological action and underlying mechanisms of Jin Gu Lian Capsule (JGL) against rheumatoid arthritis (RA) based on network pharmacology and experimental verification. Methods: Network pharmacology approaches were performed to explore the core active compounds of JGL, key therapeutic targets, and signaling pathways. Molecular docking was used to predict the binding affinity of compounds with targets. In vivo experiments were undertaken to validate the findings from network analysis. Results: A total of 52 targets were identified as candidate JGL targets for RA. Sixteen ingredients were identified as the core active compounds, including, quercetin, myricetin, salidroside, etc. Interleukin-1 beta (IL1B), transcription factor AP-1 (JUN), growth-regulated alpha protein (CXCL1), C-X-C motif chemokine (CXCL)3, CXCL2, signal transducer and activator of transcription 1 (STAT1), prostaglandin G/H synthase 2 (PTGS2), matrix metalloproteinase (MMP)1, inhibitor of nuclear factor kappa-B kinase subunit beta (IKBKB) and transcription factor p65 (RELA) were obtained as the key therapeutic targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the efficacy of JGL was functionally involved in regulating immune-mediated inflammation, in which IL-17/NF-κB signaling was recommended as one of the main pathways. Molecular docking suggested that the core active compounds bound strongly to their respective targets. Experimentally, JGL treatment mitigated inflammation, showed analgesic activity, and ameliorated collagen-induced arthritis. Enzyme-linked immunosorbent assay showed that JGL effectively reduced the serum levels of cytokines, chemokines, and MMPs. Immunohistochemistry staining showed that JGL markedly reduced the expression of the targets in IL-17/NF-κB pathway including IL-17A, IL-17RA, NF-κB p65, C-X-C motif ligand 2, MMP1 and MMP13. Conclusion: This investigation provided evidence that JGL may alleviate RA symptoms by partially inhibiting the immune-mediated inflammation via IL-17/NF-κB pathway.


Subject(s)
Arthritis, Rheumatoid , Drugs, Chinese Herbal , Humans , NF-kappa B , Transcription Factor RelA , Interleukin-17 , Molecular Docking Simulation , Network Pharmacology , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Drugs, Chinese Herbal/pharmacology
3.
Front Pharmacol ; 14: 1133982, 2023.
Article in English | MEDLINE | ID: mdl-36874008

ABSTRACT

Background: A. chinense frequently used in Miao medicine to treat rheumatic diseases. However, as a famous toxic herb, Alangium chinense and its representative components exhibit ineluctable neurotoxicity, thus creating significant challenges for clinical application. The combined application with compatible herbs in Jin-Gu-Lian formula attenuates such neurotoxicity according to the compatible principle of traditional Chinese medicines. Purpose: We aimed to investigate the detoxification of the compatible herbs in Jin-Gu-Lian formula on A. chinense-induced neurotoxicity and investigate its mechanism. Methods: Neurobehavioral and pathohistological analysis were used to determine the neurotoxicity in rats administered with A. chinense extract (AC), extract of compatible herbs in Jin-Gu-Lian formula (CH) and combination of AC with CH for 14 days. The mechanism underlying the reduction of toxicity by combination with CH was assessed by enzyme-linked immunosorbent assays, spectrophotometric assays, liquid chromatography tandem-mass spectrometry and real-time reverse transcription-quantitative polymerase chain reaction. Results: Compatible herbs attenuated the AC-induced neurotoxicity as evidenced by increased locomotor activity, enhanced grip strength, the decreased frequency of AC-induced morphological damage in neurons, as well as a reduction of neuron-specific enolase (NSE) and neurofilament light chain (NEFL) levels. The combination of AC and CH ameliorated AC-induced oxidative damage by modulating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC). AC treatment significantly reduced the levels of monoamine and acetylcholine neurotransmitters in the brains of rats, including acetylcholine (Ach), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), and serotonin (5-HT). Combined AC and CH treatment regulated the abnormal concentrations and metabolisms of neurotransmitters. Pharmacokinetic studies showed that the co-administration of AC and CH significantly decreased plasma exposure levels of two main components of AC, as evidenced by the reduction of maximum plasma concentration (Cmax), area under the plasma concentration-time curve (AUC) compared to AC. In addition, the AC-induced downregulation in mRNA expression of cytochrome P450 enzymes was significantly reduced in response to combined AC and CH treatment. Conclusion: Compatible herbs in Jin-Gu-Lian formula alleviated the neurotoxicity induced by A. chinense by ameliorating oxidative damage, preventing abnormality of neurotransmitters and modulating pharmacokinetics.

4.
BMC Complement Med Ther ; 23(1): 62, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36810081

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc; also known as "scleroderma") is an autoimmune disorder characterized by extensive fibrosis, vascular changes, and immunologic dysregulation. Baicalein (phenolic flavonoid derived from Scutellaria baicalensis Georgi) has been used to treat the pathological processes of various fibrotic and inflammatory diseases. In this study, we investigated the effect of baicalein on the major pathologic characteristics of SSc: fibrosis, B-cell abnormalities, and inflammation. METHODS: The effect of baicalein on collagen accumulation and expression of fibrogenic markers in human dermal fibroblasts were analyzed. SSc mice were produced by injecting bleomycin and treated with baicalein (25, 50, or 100 mg/kg). The antifibrotic features of baicalein and its mechanisms were investigated by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, western blotting and flow cytometry. RESULTS: Baicalein (5-120 µM) significantly inhibited the accumulation of the extracellular matrix and fibroblast activation in transforming growth factor (TGF)-ß1- and platelet derived growth factor (PDGF)-induced human dermal fibroblasts, as evidenced by abrogated deposition of total collagen, decreased secretion of soluble collagen, reduced collagen contraction capability and downregulation of various fibrogenesis molecules. In a bleomycin-induced model of dermal fibrosis in mice, baicalein (25-100 mg/kg) restored dermal architecture, ameliorated inflammatory infiltrates, and attenuated dermal thickness and collagen accumulation in a dose-dependent manner. According to flow cytometry, baicalein reduced the proportion of B cells (B220+ lymphocytes) and increased the proportion of memory B cells (B220+CD27+ lymphocytes) in the spleens of bleomycin-induced mice. Baicalein treatment potently attenuated serum levels of cytokines (interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-17A, tumor necrosis factor-α), chemokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-1 beta) and autoantibodies (anti-scleroderma 70 (Scl-70), anti-polymyositis-scleroderma (PM-Scl), anti-centromeres, anti-double stranded DNA (dsDNA). In addition, baicalein treatment can significantly inhibit the activation of TGF-ß1 signaling in dermal fibroblasts and bleomycin-induce mice of SSc, evidenced by reducing the expression of TGF-ß1 and IL-11, as well as inhibiting both small mother against decapentaplegic homolog 3 (SMAD3) and extracellular signal-related kinase (ERK) activation. CONCLUSIONS: These findings suggest that baicalein has therapeutic potential against SSc, exerting modulating B-cell abnormalities, anti-inflammatory effects, and antifibrosis.


Subject(s)
B-Lymphocytes , Flavanones , Scleroderma, Systemic , Animals , Humans , Mice , Bleomycin/adverse effects , Collagen/metabolism , Fibrosis , Inflammation , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/metabolism , Transforming Growth Factor beta1/metabolism , Flavanones/pharmacology , B-Lymphocytes/drug effects
5.
Biomed Pharmacother ; 157: 113933, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36399826

ABSTRACT

Nasal administration of Traditional Chinese medicine (TCM) has a long history of applications. With the gradual maturing of technology and pharmacological advances, nasal preparations of TCM have undergone significant changes. Nasal TCM formulations are used not only for treatment of pneumonia, asthma, sinusitis and allergic rhinitis but also Alzheimer's disease and Parkinson's disease, as antidepressants and antiepileptics, and in ischemia reperfusion. However, according to the analysis of nasal preparations of TCM currently on the market, most of them were compound preparations, which were used to treat allergic rhinitis (AR), common cold, headache and other local treatments, with a small range of diseases. At the same time, the dosage forms were mainly traditional dosage forms, aerosols and sprays, but there were no new dosage forms, which can not meet the clinical needs in terms of variety number, variety diversity and disease types. In this manuscript, we reviewed the development and applications of different nasal preparations of TCM from the aspects of nasal structure, origin, factors affecting absorption and common dosage forms, pharmacodynamics, targeting of nasal delivery and safety. In the near future, we expect that more nasal preparations of Chinese medicine with independent intellectual property rights will be marketed to meet the needs of clinical disease management.


Subject(s)
Drugs, Chinese Herbal , Rhinitis, Allergic , Humans , Administration, Intranasal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Rhinitis, Allergic/drug therapy
6.
Front Pharmacol ; 13: 948693, 2022.
Article in English | MEDLINE | ID: mdl-36249816

ABSTRACT

Tibetan medicine is one of the oldest traditional medicine systems in the world. Taking the Ruyi Zhenbao tablet (RYZB) as an example, which is a widely used classic oral Tibetan medicine, this article discusses the pharmacokinetics of single administration and long-term treatment and analyzed its metabolic properties and tissue distribution in vivo. After single administration, blood samples were collected before administration and at different time points after administration in different groups of rats. In the study of long-term treatment effects, blood samples were collected from the animals in each group on days 1, 15, and 30 and on day 15 after withdrawal. The results showed that after a single administration, the dose change had no significant effect on the T1/2 and Tmax of agarotetrol, isoliquiritigenin, and piperine (p > 0.05). There was a certain correlation between the increase in AUC0-t and the Cmax of agarotetrol, isoliquiritigenin, piperine, and the increase in dosage, with a dose range of 0.225-0.900 g/kg. There were no significant differences in Cmax and AUC0-t of ferulic acid at different doses (p > 0.05). Meanwhile, there was no significant sex-based difference in the pharmacokinetic parameters of these four components in rats. After long-term administration, the distribution agarotetrol in various tissues of rats was kidney > liver > heart > brain; the tissue distribution in low- and medium-dose groups of isoliquiritigenin was liver > kidney > heart > brain, and in the high-dose group, kidney > liver > heart > brain. The tissue distribution of piperine in each dose group was liver > kidney > heart > brain, and that of ferulic acid in each dose group was kidney > liver > heart > brain. Through the establishment of the previously developed methodology, the pharmacokinetic properties of RYZB were analyzed after a single administration and long-term administration. Our findings confirmed this approach for the exploration and establishment of a pharmacokinetic evaluation of Tibetan medicine, to support its guiding role in clinical application, but also to accelerate research into Tibetan medicine theory and medicine and to provide a solid foundation for the translation of Tibetan medicine throughout the world.

7.
Front Pharmacol ; 13: 951613, 2022.
Article in English | MEDLINE | ID: mdl-36071852

ABSTRACT

To avoid adverse drug reactions associated with injection, off-label nebulization of Tanreqing (TRQ) injection is often used in China to treat respiratory diseases. However, the aerodynamic properties and lung availability of TRQ aerosols remain largely uninvestigated. This study aimed to investigate the size distribution of TRQ aerosols and to compare the pharmacokinetics and tissue distribution of two compounds from TRQ (baicalin and oroxyloside) after transnasal aerosol inhalation and intravenous administration. Furthermore, this study aimed to evaluate the efficacy of TRQ against lipopolysaccharide-induced lung inflammation. The Dv(50) and transmission of TRQ aerosols were 2.512 µm and 74.867%, respectively. The Cmax of baicalin and oroxyloside in rat plasma after inhalation was lower than that after intravenous injection. After inhalation, the area under the curve (AUC) of baicalin and oroxyloside in tissues (lung, bronchoalveolar lavage fluid, and trachea) was 7.9-115.3 and 9.5-16.0 times that observed after intravenous administration, respectively. Baicalin and oroxyloside maintained high concentrations 4 h after inhalation, but only 1 h after intravenous injection. The mean lung-to-plasma concentration ratios of baicalin and oroxyloside were 287.6 and 49.9 times higher than with intravenous administration. Inhaled TRQ achieved the same effect against lipopolysaccharide-induced lung inflammation in mice at doses of only 1/16-1/8 of those administered intravenously. The results indicate that TRQ inhalation is a promising alternative to intravenous injections for the treatment of respiratory infection.

8.
J Agric Food Chem ; 70(38): 12055-12064, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36122349

ABSTRACT

Cannabidiol (CBD), the main nonpsychoactive cannabinoid in Cannabis sativa, has diverse applications in the pharmacological, food, and cosmetic industries. The long plantation period and the complex chemical structure of cannabidiol pose a great challenge on CBD supply. Here, we achieved de novo biosynthesis of cannabidiol in Saccharomyces cerevisiae. The CBD production was further enhanced by 2.53-fold through pushing the supply of precursors and fusion protein construction. Bile pigment transporter 1 (BPT1) was the most effective transporter for transferring cannabigerolic acid (CBGA) from the cytoplasm to the vacuole, which removed the physical barrier separating CBGA and its catalytic enzyme. The lowest binding energy of the CBGA-BPT1 complex confirmed a strong interaction between BPT1 and CBGA. A CBD yield of 6.92 mg/L was achieved, which was 100-fold higher than the yield generated by the starting strain. This study provides insights into high-level CBD-producing strain construction and lays the foundation for CBD supply.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Bile Pigments , Cannabidiol/chemistry , Cannabis/chemistry , Cannabis/genetics , Saccharomyces cerevisiae/genetics , Vacuoles
9.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1618-1624, 2022 Mar.
Article in Chinese | MEDLINE | ID: mdl-35347961

ABSTRACT

Aconiti Kusnezoffii Radix Cocta is one of the most commonly used medicinal materials in Mongolian medicine. Due to the strong toxicity of Aconiti Kusnezoffii Radix Cocta, Mongolian medicine often uses Chebulae Fructus, Glycyrrhizae Radix et Rhizoma to reduce the toxicity, so as to ensure the curative effect of Aconiti Kusnezoffii Radix Cocta while ensuring its clinical curative effect, but the mechanism is not clear. The aim of this study was to investigate the effects of Chebulae Fructus, Glycyrrhizae Radix et Rhizoma and Aconiti Kusnezoffii Radix Cocta on the mRNA transcription and protein translation of cytochrome P450(CYP450) in the liver of normal rats. Male SD rats were randomly divided into negative control(NC) group, phenobarbital(PB) group(0.08 g·kg~(-1)·d~(-1)), Chebulae Fructus group(0.254 2 g·kg~(-1)·d~(-1)), Glycyrrhizae Radix et Rhizoma group(0.254 2 g·kg~(-1)·d~(-1)), Aconiti Kusnezoffii Radix Cocta group(0.254 2 g·kg~(-1)·d~(-1))and compatibility group(0.254 2 g·kg~(-1)·d~(-1),taking Aconiti Kusnezoffii Radix Cocta as the standard). After continuous administration for 8 days, the activities of total bile acid(TBA), alkaline phosphatase(ALP), amino-transferase(ALT) and aspartate aminotransferase(AST)in serum were detected, the pathological changes of liver tissue were observed, and the mRNA and protein expression levels of CYP1 A2, CYP2 C11 and CYP3 A1 were observed. Compared with the NC group, the serum ALP, ALT and AST activities in the Aconiti Kusnezoffii Radix Cocta group were significantly increased, and the ALP, ALT and AST activities were decreased after compatibility. At the same time, compatibility could reduce the liver injury caused by Aconiti Kusnezoffii Radix Cocta. The results showed that Aconiti Kusnezoffii Radix Cocta could inhibit the expression of CYP1 A2, CYP2 C11 and CYP3 A1, and could up-regulate the expression of CYP1 A2, CYP2 C11 and CYP3 A1 when combined with Chebulae Fructus and Glycyrrhizae Radix et Rhizoma. The level of translation was consistent with that of transcription. The compatibility of Chebulae Fructus and Glycyrrhizae Radix et Rhizoma with Aconiti Kusnezoffii Radix Cocta could up-regulate the expression of CYP450 enzyme, reduce the accumulation time of aconitine in vivo, and play a role in reducing toxicity, and this effect may start from gene transcription.


Subject(s)
Cytochrome P-450 Enzyme System , Liver , Animals , Cytochrome P-450 Enzyme System/genetics , Drugs, Chinese Herbal , Glycyrrhiza , Male , Plant Extracts , Rats , Rats, Sprague-Dawley , Terminalia
10.
Chin Med ; 16(1): 40, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34059098

ABSTRACT

Fritillaria naturally grows in the temperate region of Northern Hemisphere and mainly distributes in Central Asia, Mediterranean region, and North America. The dried bulbs from a dozen species of this genus have been usually used as herbal medicine, named Beimu in China. Beimu had rich sources of phytochemicals and have extensively applied to respiratory diseases including coronavirus disease (COVID-19). Fritillaria species have alkaloids that act as the main active components that contribute multiple biological activities, including anti-tussive, expectorant, and anti-asthmatic effects, especially against certain respiratory diseases. Other compounds (terpenoids, steroidal saponins, and phenylpropanoids) have also been identified in species of Fritillaria. In this review, readers will discover a brief summary of traditional uses and a comprehensive description of the chemical profiles, biological properties, and analytical techniques used for quality control. In general, the detailed summary reveals 293 specialized metabolites that have been isolated and analyzed in Fritillaria species. This review may provide a scientific basis for the chemical ecology and metabolomics in which compound identification of certain species remains a limiting step.

11.
Front Pharmacol ; 12: 588837, 2021.
Article in English | MEDLINE | ID: mdl-33967747

ABSTRACT

Dichroa alkali salt (DAS) is the active ingredient of Changshan, a traditional Chinese antimalarial medicine. However, owing to its vomiting side effects, its clinical use is limited. Recently, DAS-induced vomiting has attracted broad attention; however, the mechanisms involved have not yet been elucidated. The present study aimed to explore DAS induced vomiting and decipher the potential role of the 5-serotonin (5-HT) and substance p (SP) signaling pathways. We used a combination of approaches in the context of a rat pica model, such as immunoblot analysis, HPLC-ECD, ELISA, quantitative real-time PCR, pharmacological inhibition, and immunohistochemistry assays. We demonstrated that DAS contributed to Changshan-induced vomiting via the activation of the 5-HT and SP signaling pathways. DAS could induce a dose-dependent kaolin intake in the rat pica model. Moreover, DAS caused a similar profile as Cisplatin (DDP): "low-dose double-peak, high-dose single-peak pica phenomenon". Interestingly, treatment with DAS stimulated the peripheral ileum and central medulla oblongata and augmented the release of 5-HT, SP, and preprotachykinin-A and the expression of 5-HT3 and NK1 receptors in the two issues in acute phase. Additionally, the 5-HT3 and NK1 receptor antagonists effectively alleviated DAS-induced kaolin intake and significantly reduced DAS-induced 5-HT and SP levels in the two issues in acute phase. Similar responses were not observed in the context of dopamine receptor inhibition. This study innovatively revealed that the 5-HT and SP-mediated vomiting network plays an important role in DAS-induced acute vomiting; of note, ondansetron, and aprepitant can effectively antagonize DAS-induced vomiting. Our results suggest a potential therapeutic strategy (based on drugs approved for human use) to prevent the DAS-associated adverse reactions.

12.
Biomed Pharmacother ; 138: 111475, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33774314

ABSTRACT

The purpose of this study was to investigate the antifibrotic effect and anticoagulant ability of salvianolic acid B (SAB) inhalation solution on bleomycin (BLM)-induced idiopathic pulmonary fibrosis (IPF) in rats. We investigated how the osmotic pressure and concentration of SAB in an aerosol exerted effects. We also determined the aerodynamic particle size distribution and the uniformity of the delivery dose; these parameters were found to be suitable for inhalation. Compared with BLM group, the levels of hydroxyproline (HYP), collagen-1 (Col-1), tissue factor (TF) / coagulation factor VII (TF-VIIa), activated coagulation factor X (FXa), thrombin-antithrombin complex (TAT), fibrinogen degradation product (FDP) and plasminogen activator inhibitor-1 (PAI-1) decreased in SAB group. The increased expression of coagulation factor Ⅱ (FⅡ), coagulation factor X (FX), tissue type plasminogen activator (t-PA) and urokinase type plasminogen activator (u-PA) proved that SAB has obvious antifibrotic and anticoagulant effects. Western blotting and immunofluorescence further showed that compared with the BLM group, the SAB group of rats exhibited significant reductions in the expression levels of protease-activated receptors-1 (PAR-1) and phospho-protein kinase C (p-PKC) and increased expression levels of protein kinase C (PKC) in lung tissue. Furthermore, SAB reduced the infiltration of lymphocytes and neutrophils, protected the basic structure of the lung from destruction, inhibited the proliferation of fibrous tissue. Collectively, our data revealed that SAB may exert its antifibrotic and anticoagulant effects by preventing the expression of PAR-1 and phosphorylation of PKC.


Subject(s)
Anticoagulants/administration & dosage , Antifibrinolytic Agents/administration & dosage , Benzofurans/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Pulmonary Fibrosis/drug therapy , Administration, Inhalation , Animals , Bleomycin/toxicity , Dose-Response Relationship, Drug , Drug Synergism , Male , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Rats , Rats, Sprague-Dawley
13.
J Nanosci Nanotechnol ; 20(4): 2558-2566, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31492276

ABSTRACT

Febrifugine hydrochloride (FFH) has strong pharmacological antimalarial effect. However, compared with oral administration, the efficacy of intravenous administration is significantly reduced. In this study, we prepared conventional liposomes and PEGylated liposomes to improve the efficacy of its intravenous injection. Both liposome formulations were prepared using a modified ethanol injection method. Their mean particle sizes were 126.23 and 114.93 nm, mean zeta potentials were -6.25 and -26.33 mV, and entrapment efficiencies (EE) were 89.43 and 96.42%, respectively. The in vitro release profile indicated that the release of FFH from PEGylated liposomes and conventional liposomes was slower than free FFH, with sustained-release effect of PEGylated liposomes being more significant. PEGylated liposomes demonstrated excellent antimalarial activities in vitro superior to free FFH and conventional FFH-loaded liposomes. In addition, the PEGylated liposomes resulted in enhanced antimalarial effect in P. berghei infected mice in vivo with delayed recrudescence and prolonged survival time, compared with free FFH and conventional FFH-loaded liposomes administration. Based on these exciting experimental results, PEGylated liposomes could be a potential drug delivery system for FFH, with enhanced pharmacodynamics of intravenous injection.


Subject(s)
Liposomes , Polyethylene Glycols , Animals , Mice , Particle Size , Piperidines , Quinazolines
14.
Chin J Integr Med ; 26(4): 277-282, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31227963

ABSTRACT

OBJECTIVE: To study the antimalarial effects and mechanisms of artemisinin (Qinghaosu in Chinese, QHS) on mitochondria in mice infected with Plasmodium berghei. METHODS: A total of 108 C57 mice infected with Plasmodium berghei were randomly divided into 3 groups by weight: the control group, 200 and 400 mg/kg QHS groups. The two QHS treatment groups were further divided into 4 sub-groups with 12 animals each time according to the treatment time, 0.5, 1, 2, and 4 h. Normal saline was intragastrically (i.g.) administered to the control group. The other two groups received different doses of QHS by i.g. administration. Animals were treated once with QHS for different detection time as follows: 0.5, 1, 2, and 4 h. The mitochondrial energy metabolism, oxidative damage, membrane potential, and membrane permeability and other indexes were detected. RESULTS: After administration of 200 and 400 mg/kg QHS, adenosine triphosphate (ATP) levels in Plasmodium and its mitochondria were reduced (P<0.05), the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) were increased (P<0.05), and the activity of superoxide dismutase (SOD) was also increased (P<0.05). At the same time, the membrane potential of the mitochondria was reduced and the degree to which the membrane permeability transition pore was opened was irreversibly increased (P<0.05). CONCLUSIONS: Mitochondria in Plasmodium were the targets of QHS, which can adversely affect mitochondrial energy metabolism, oxidative damage, membrane potential, and membrane opening, and ultimately exert an antimalarial effect.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium berghei/drug effects , Animals , Energy Metabolism/drug effects , Malaria, Falciparum , Membrane Potentials/drug effects , Mice , Mitochondria/drug effects , Oxidative Stress , Reactive Oxygen Species , Superoxide Dismutase
15.
Biomed Pharmacother ; 118: 109226, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31377471

ABSTRACT

The effects of Reduning injection and nebulized inhalation for treating upper respiratory tract infections were compared, including anti-bacterial, anti-viral, anti-inflammatory, anti-pyretic, anti-tussive, and anti-phlegm. Using chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid, and geniposide as the index components, the pharmacokinetics and tissue distributions were compared. Influenza virus PR8-infected mice in the Reduning groups showed significantly reduced mortality and prolonged survival time. The white blood cell count was significantly reduced in the 20- and 10-min groups. Inhalation significantly decreased the temperature from 2 h in the 20- and 10-min groups. Inhalation significantly reduced the cough rate but not cough latency. Phenol red excretion was significantly increased in all Reduning groups. The elimination half-life of geniposide after inhalation in male and female rats was 2.05-5.28 and 4.03-10.4 h, respectively, which was much greater than after injection. Regarding tissue distribution, the injection dose (2 mL/kg) was 50 times the inhalation dose, and maximum serum concentration (Cmax) and AUCINF_obs of the four components in the trachea and lung were 0.95-11.1 and 0.59-4.36 times the inhalation values, respectively. Plasma Cmax and AUCINF_obs were 160-637 and 22.7-180 times the inhalation values, respectively. Atomized Reduning dose was equivalent to 1/90 of the mouse injection dose, and the effects of inhalation were similar or superior to those of injections. Atomization inhalation is targeted to the lungs, so systemic drug exposure was greatly reduced and lung concentration was high, which may increase the efficacy and reduce the safety risks associated with injections.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Injections , Nebulizers and Vaporizers , Administration, Inhalation , Animals , Anti-Bacterial Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cough/drug therapy , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Female , Leukocyte Count , Male , Pneumonia/blood , Pneumonia/drug therapy , Pneumonia/pathology , Protective Agents/pharmacology , Protective Agents/therapeutic use , Rats, Sprague-Dawley , Rats, Wistar , Temperature , Tissue Distribution , Treatment Outcome
16.
Pharmacol Res ; 142: 1-13, 2019 04.
Article in English | MEDLINE | ID: mdl-30735802

ABSTRACT

Metastasis is the primary cause of cancer recurrence and cancer related mortality in triple-negative breast cancer (TNBC). EGFR overexpression is in 50-75% TNBC and EGFR-mediated signaling has potential as an attractive therapeutic target in some specific subtypes of breast cancer due to its significant association with tumor metastasis and poor prognosis. Therefore, identification of promising therapeutic strategies targeting EGFR with higher specificity toward cancer metastasis is urgently needed. 20(S)-protopanaxadiol (PPD), one of the major active metabolites from Panax ginseng, has been widely reported to possess pleiotropic anticancer activities in various cancers. In this study, we investigated the effect of PPD against cancer metastasis and the related molecular mechanisms in TNBC in vitro and in vivo. PPD (>30 µM) suppressed cell proliferation by arresting cell cycle in G0/1 phase and triggering cells apoptosis as shown by cell viability assay, flow cytometry analysis and colony formation assay, whereas lower dose of PPD (<20 µM) decreased metastatic potential of MDA-MB-231 and SUM159 cells through direct inhibition of cell adhesion, motility and invasiveness. In TNBC xenograft and syngeneic models, PPD treatment markedly decreased tumor growth and lung metastasis. PPD reversed epithelial-mesenchymal transition (EMT), decreased the expression and activity of matrix metalloproteinases (MMPs) while increased the expression of tissue inhibitors of metalloproteinases (TIMPs) as shown by Western blot and gelatin zymography. Cell signaling pathways that control the expression or activation of these processes were investigated by Western blot and ELISA assay. PPD treatment reduced the phosphorylation of EGFR and down-regulated the activation ERK1/2, p38 and JNK signaling, which was further validated by using the agonists or inhibitors of EGFR and MAP kinases family. Collectively, these findings suggest that PPD holds therapeutic potential against the tumor metastasis of TNBC via targeting EGFR-mediated MAPK pathway.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Ginsenosides/therapeutic use , Mitogen-Activated Protein Kinases/metabolism , Sapogenins/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/metabolism , Female , Ginsenosides/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred BALB C , Sapogenins/pharmacology , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
17.
Mol Neurobiol ; 53(4): 2249-57, 2016 May.
Article in English | MEDLINE | ID: mdl-25972239

ABSTRACT

Chitooligosaccharide (COS) has been shown to induce fibroblast apoptosis, indicating that it could be used as a material to inhibit scar formation. In the present study, we used a mouse model of sciatic nerve injury (SNI) to determine the role of COS in scar inhibition and functional recovery. The animals were divided into three groups: SNI, SNI + vehicle, and SNI + COS group. We performed a series of functional and histological examinations at ctrl, 0 min, 14 days, and 42 days, including behavioral recovery, percentage of regenerating axons, degree of scar formation, vascular changes, type I and type III collagen ratio, and percentage of demyelinated axons. The SNI + COS group exhibited better recovery of sensory and motor function and less scar formation. Two-photon microscopy showed that the percentage of regenerating axons was highest in the SNI + COS group at 14 and 42 days. Our results suggested that COS can inhibit scar formation and enhance functional recovery by inducing fibroblast death, altering the proportion of different vascular diameters, changing the ratio of type I/type III collagen, and reducing the percentage of demyelinated axons. COS might be a useful drug in the treatment of SNI to reduce scar formation, but additional research is required to clarify the relevant molecular pathways.


Subject(s)
Chitin/analogs & derivatives , Cicatrix/drug therapy , Cicatrix/physiopathology , Recovery of Function/drug effects , Sciatic Nerve/injuries , Sciatic Nerve/physiopathology , Animals , Axons/drug effects , Cell Death/drug effects , Chitin/pharmacology , Chitin/therapeutic use , Chitosan , Cicatrix/pathology , Collagen/metabolism , Demyelinating Diseases/drug therapy , Demyelinating Diseases/pathology , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/pathology , Male , Mice, Transgenic , Nerve Regeneration/drug effects , Oligosaccharides , Reflex/drug effects , Sciatic Nerve/blood supply , Sciatic Nerve/pathology , Time Factors
18.
Int J Med Robot ; 11(3): 348-359, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25242630

ABSTRACT

BACKGROUND: Surgical complications such as healing problems, in fractures treated using the Arbeitsgemeinschaft für Osteosynthesefragen (AO) technique, present functional and economic challenges to patients and treatment dilemmas for surgeons. Computer-assisted orthopaedic surgery using minimally invasive techniques focused on biological osteosynthesis is a novel direction for fracture treatment. METHOD: We modified the hexapod computer-assisted fracture reduction system by introducing a new reduction strategy, building a new system configuration and upgrading the corresponding software. We then validated the entire system, using a fracture model of bovine femur. RESULTS: Precision tests were performed seven times on a bovine femur with a transverse fracture. Residual deviation was 1.23 ± 0.60 mm in axial deflection, 1.04 ± 0.47 mm in translation, 2.34 ± 1.79° in angulation and 2.83 ± 0.96° in rotation. CONCLUSION: Our new reduction system described here is detachable, flexible and more precise in coordinate transformations. The detachable, modular design will allow for more analogous applications in the future. Copyright © 2014 John Wiley & Sons, Ltd.

19.
Turk Neurosurg ; 24(3): 369-73, 2014.
Article in English | MEDLINE | ID: mdl-24848176

ABSTRACT

AIM: Autophagy is an important process that balances cellular protein synthesis and degradation and is involved in many physiological and pathological conditions. However, the precise role of autophagy has not yet been defined in the model of spinal cord injury (SCI). MATERIAL AND METHODS: Here, we utilized a hemisection model of acute SCI to elucidate the role of autophagy in the pathological processes underlying SCI. RESULTS: LC3B-II, a well-known marker of autophagy, was immunohistochemically detected 4H after SCI, peaked at 3D, and decreased at 21D. Hematoxylin-eosin (HE) staining confirmed accurate spinal cord hemisection, which was accompanied by both neuronal swelling and shrunken neurons with darkly stained, condensed nuclei. These findings suggest that the process of autophagy is related with pathological changes following SCI. CONCLUSION: Our results indicate autophagy is involved in the pathological changes after SCI, and potential therapies to promote neuronal regeneration following SCI should target the mechanism of autophagy.


Subject(s)
Autophagy/physiology , Spinal Cord Injuries/pathology , Animals , Immunohistochemistry , Laminectomy , Microtubule-Associated Proteins/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism
20.
Cell Biochem Biophys ; 70(1): 539-47, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24748178

ABSTRACT

Clinical studies found that negative-pressure wound therapy (NPWT) displayed significant clinical benefits in the healing of infected wounds. However, the effect of NPWT on local inflammatory responses in acute infected soft-tissue wound has not been investigated thoroughly. The purpose of this study was to test the impact of NPWT on local expression of proinflammatory cytokines, amount of neutrophils, and bacterial bioburden in wound from acute infected soft-tissue wounds. Full-thickness wounds were created on the back of rabbits, and were inoculated with Staphylococcus aureus strain ATCC29213. The wounds were treated with sterile saline-moistened gauze dressings and NPWT with continuous negative pressure (-125 mmHg). Wound samples were harvested on days 0 (6 h after bacterial inoculation), 2, 4, 6, and 8 at the center of wound beds before irrigation for real-time PCR analysis of gene expression of IL-1ß, IL-8, and TNF-α. Wound biopsies were examined histologically for neutrophil quantification in different layers of tissue. Quantitative bacterial cultures at the same time point were analyzed for bacterial clearance. Application of NPWT to acute infected wounds in rabbits was compared with treatment with sterile saline-moistened gauze, over an 8-day period. NPWT-treated wounds exhibited earlier and greater peaking of IL-1ß and IL-8 expression and decrease in TNF-α expression over the early 4 days (P < 0.05). Furthermore, histologic examination revealed that significantly increased neutrophil count was observed in the shallow layer in wound biopsies of NPWT treatment at day 2 (P < 0.001). In addition, there was a statistically significant decrease of bacteria load from baseline (day 0) at days 2 and 8 in NPWT group (P < 0.05). In conclusion, this study demonstrates that NPWT of acute infected soft-tissue wounds leads to increased local IL-1ß and IL-8 expression in early phase of inflammation, which may trigger accumulation of neutrophils and thus accelerate bacterial clearance. Meanwhile, the success of NPWT in the treatment of acute wounds can attenuate the expression of TNF-α, and the result may partly explain how NPWT can avoid significantly impairing wound healing.


Subject(s)
Negative-Pressure Wound Therapy , Soft Tissue Infections/therapy , Staphylococcal Infections/therapy , Wound Infection/therapy , Animals , Bacterial Load , Cell Count , Cytokines/genetics , Female , Gene Expression Regulation , Inflammation/genetics , Inflammation/immunology , Inflammation/therapy , Neutrophils/cytology , Rabbits , Soft Tissue Infections/genetics , Soft Tissue Infections/immunology , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , Wound Infection/genetics , Wound Infection/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...