Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 9(13): 1623-33, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27226175

ABSTRACT

The excited-state properties and chain conformations of a new low-bandgap copolymer based on benzo[1,2-b:4,5-b']dithiophene (BDT) and thieno[3,4-b]thiophene with meta-alkoxyphenyl-substituted side chains in solution were investigated comprehensively. Time-resolved spectroscopy suggested that the excited-state properties were sensitive to the conformations of the copolymer in solution. In addition, excited-state dynamics analyses revealed the photogeneration of triplet excited states by intersystem crossing (ISC) at a rate constant of ∼0.4×10(9)  s(-1) as a result of direct meta-alkoxyphenyl connection to the donor unit BDT irrespective to the macromolecular conformations. According to El-Sayed's rule, the fast ISC herein is correlated with the change of orbital types between singlet and triplet excited states as also shown by quantum chemical calculations. Our studies may shed light on the structure-property relationships of photovoltaic materials.


Subject(s)
Electric Power Supplies , Polymers/chemistry , Solar Energy , Solvents/chemistry , Kinetics , Molecular Conformation , Photochemical Processes , Thiophenes/chemistry , Toluene/chemistry
2.
J Chem Phys ; 140(8): 084903, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24588194

ABSTRACT

Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b(')]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ∼0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P(•+) yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC61BM and PBDTTT-C:PC61BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC61BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P(•+) migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC61BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.

3.
J Chem Phys ; 139(12): 124904, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24089801

ABSTRACT

Solution-phase conformations and charge photogeneration dynamics of a pair of low-bandgap copolymers based on benzo[1,2-b:4,5-b(')]dithiophene (BDT) and thieno[3,4-b]thiophene (TT), differed by the respective carbonyl (-C) and ester (-E) substituents at the TT units, were comparatively investigated by using near-infrared time-resolved absorption (TA) spectroscopy at 25 °C and 120 °C. Steady-state and TA spectroscopic results corroborated by quantum chemical analyses prove that both PBDTTT-C and PBDTTT-E in chlorobenzene solutions are self-aggregated; however, the former bears a relatively higher packing order. Specifically, PBDTTT-C aggregates with more π-π stacked domains, whereas PBDTTT-E does with more random coils interacting strongly at the chain intersections. At 25 °C, the copolymers exhibit comparable exciton lifetimes (~1 ns) and fluorescence quantum yields (~2%), but distinctly different charge photogeneration dynamics: PBDTTT-C on photoexcitation gives rise to a branching ratio of charge separated (CS) over charge transfer (CT) states more than 20% higher than PBDTTT-E does, correlating with their photovoltaic performance. Temperature and excitation-wavelength dependent exciton∕charge dynamics suggest that the CT states localize at the chain intersections that are survivable up to 120 °C, and that the excitons and the CS states inhabit the stretched strands and the also thermally robust orderly stacked domains. The stable self-aggregation structures and the associated primary charge dynamics of the PBDTTT copolymers in solutions are suggested to impact intimately on the morphologies and the charge photogeneration efficiency of the solid-state photoactive layers.

4.
Opt Express ; 21 Suppl 2: A241-9, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482286

ABSTRACT

Influence of electric field on the subnanosecond charge photogeneration dynamics in the polymer solar cell based on polyfluorene copolymer BisDMO-PFDTBT blended with PC(61)BM was examined with transient absorption spectroscopy. The charge dynamics showed no difference under short- or open-circuit conditions and under a forward bias of 0.79 V (1.6 × 10(5) V/cm), implying negligible field effects on the subnanosecond dynamics of charge photogeneration/recombination. However, under the reverse biases of -2 V (4.0 × 10(5) V/cm) and -5 V (1.0 × 10(6) V/cm), significant enhancement of charge photogeneration and apparent suppression of polaron pair recombination were observed, which agrees with the field-assisted enhancement of external quantum efficiency of the solar cell devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...