Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 172: 116219, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310654

ABSTRACT

Vascular dementia (VaD) represents a severe cognitive dysfunction syndrome closed linked to cardiovascular function. In the present study, we assessed the potential of Xinshubao tablet (XSB), a traditional Chinese prescription widely used for cardiovascular diseases, to mitigate neuropathological damage in a mouse model of VaD and elucidated the underlying mechanisms. Our findings revealed that oral administration of XSB rescued the cardiac dysfunction resulting from bilateral common carotid artery stenosis (BCAS), improved the cerebral blood flow (CBF) and cognitive function, reduced white matter injury, inhibited excessive microglial and astrocytic activation, stimulated hippocampal neurogenesis, and reduced neural apoptosis in the brains of BCAS mice. Mechanistically, RNA-seq analysis indicated that XSB treatment was significantly associated with neuroinflammation, vasculature development, and synaptic transmission, which were further confirmed by q-PCR assays. Western blot results revealed that XSB treatment hindered the nuclear translocation of nuclear factor-κB (NF-κB), thereby suppressing the NF-κB signaling pathway. These results collectively demonstrated that XSB could ameliorate cognitive dysfunction caused by BCAS through regulating CBF, reducing white matter lesions, suppressing glial activation, promoting neurogenesis, and mitigating neuroinflammation. Notably, the NF-κB signaling pathway emerged as a pivotal player in this mechanism.


Subject(s)
Carotid Stenosis , Cognitive Dysfunction , Dementia, Vascular , Animals , Mice , Dementia, Vascular/drug therapy , Neuroinflammatory Diseases , NF-kappa B , Cognitive Dysfunction/drug therapy , Neurogenesis , Disease Models, Animal
2.
J Ethnopharmacol ; 322: 117625, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38145859

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Classical prescriptions are not only a primary method of clinical treatment in traditional Chinese medicine (TCM) but also represent breakthroughs in the inheritance and development of this field. Kuntai capsule (KTC), a formulation based on a classical prescription, comprises six TCMs: Rehmanniae Radix Praeparata, Coptidis Rhizoma, Paeoniae Radix Alba, Scutellariae Radix, Asini Corii Colla, and Poria. This formulation possesses various beneficial effects, such as nourishing yin and blood, clearing heat and purging fire, and calming the nerves and relieving annoyance. The investigation of the efficacy and mechanism of KTC in regulating anti-aging factors in the treatment of premature ovarian insufficiency (POI) is not only a prominent topic in classical prescription research but also a crucial issue in the treatment of female reproductive aging using TCM. AIM OF THE STUDY: To evaluate the therapeutic effect of KTC on POI and its underlying mechanism. MATERIALS AND METHODS: Healthy and specific pathogen-free (SPF) female Kunming mice aged 6-8 weeks were selected. After acclimatization, the mice were randomly divided into a control, model, and high, middle, and low dose groups of KTC (1.6, 0.8, and 0.4 mg/kg, respectively). Except for the control group, the animals in the other groups were administered a single intraperitoneal injection of 120 mg/kg cyclophosphamide and 30 mg/kg Busulfan to induce the model of POI. After modeling, the mice were treated with the corresponding drugs for 7 days. Serum and ovarian tissues were collected, and the levels of serum follicle-stimulating hormone (FSH), estradiol (E2), and superoxide dismutase 2 (SOD2) were determined using enzyme-linked immunosorbent assay (ELISA). The chemical composition of KTC was characterized and analyzed using ultra-high-pressure liquid chromatography-linear ion trap-Orbitrap tandem mass spectrometry. A "drug-component-target-pathway-disease" network was constructed using network pharmacology research methods to identify the key active components of KTC in treating POI and to elucidate its potential mechanism. The protein expression of the FOXO3/SIRT5 pathway was detected by western blotting. RESULTS: Compared to the model group, the high-dose group of KTC showed a significant increase in ovarian index, significant increase in levels of E2 and SOD2, and a significant decrease in FSH levels. Through systematic analysis of the chemical constituents of KTC, 69 compounds were identified, including 7 organic acids, 14 alkaloids, 28 flavonoids, 15 terpenoids, 2 lignans, 2 phenylpropanoids, and 1 sugar. Based on network pharmacology research methods, it was determined that KTC exerts its therapeutic effect on POI through multiple components (paeoniflorin and malic acid), multiple targets (FOXO3 and SIRT5), and multiple pathways (prolactin signaling pathway, longevity regulating pathway, and metabolic pathways). The accuracy of the network pharmacology prediction was further validated by detecting the protein expression of SIRT5 and FOXO3a, which showed a significant increase in the middle and high-dose groups of KTC compared to the model group. CONCLUSIONS: KTC may effectively treat POI through a multi-component, multi-target, multi-pathway approach, providing an experimental basis for using KTC based on classical prescriptions in the treatment of POI.


Subject(s)
Drugs, Chinese Herbal , Menopause, Premature , Primary Ovarian Insufficiency , Sirtuins , Mice , Humans , Female , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Primary Ovarian Insufficiency/drug therapy , Signal Transduction , Follicle Stimulating Hormone , Forkhead Box Protein O3
3.
Heliyon ; 9(9): e20149, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810062

ABSTRACT

Acute lung injury (ALI) is a serious pulmonary complication that often arises from pneumonia, respiratory tract infections caused by bacteria or viruses, and other factors. It is characterized by acute onset and high mortality. Angong Niuhuang Wan (AGNHW) is a renowned emergency medicine in traditional Chinese medicine, known as the "cool open (febrile disease) three treasures" and regarded as the first of the "three treasures". Previously studies have confirmed that AGNHW has anti-inflammatory effects, improves cerebral circulation, reduces brain edema, and protects vascular endothelium. However, the active components and pharmacological mechanisms of AGNHW in treating ALI remain unclear. In this study, we confirmed that AGNHW can inhibit cytokine storm activity and reduce inflammation induced by LPS in ALI mice. We then analyzed differential proteins using proteomic technology and identified 741 differential proteins. By combining network pharmacological analysis, we deeply discussed the key active components and mechanism of AGNHW in treating ALI. By constructing the interaction network between disease and drug, we identified 21 key active components (such as Quercetin, Kaempferol, and Crocetin) and 25 potential core targets (such as PIK3CG, p65, and MMP9). These candidate targets play an important role in anti-inflammation and immune regulation. Through enrichment analysis of core targets, we found several pathways related to ALI, such as the NF-κB signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. This indicates that AGNHW plays a therapeutic role in ALI through multi-components, multi-targets, and multi-pathways.

4.
Biomed Pharmacother ; 165: 115119, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423168

ABSTRACT

Traditional Chinese medicine offer unique advantages in mitigating and preventing early or intermediate stage for treating heart failure (HF). The purpose of this study was to assess the in vivo therapeutic efficacy of Xin-shu-bao (XSB) at different stages of HF following induction of a myocardial infarction (MI) in mice and use mass spectrometry-based proteomics to identify potential therapeutic targets for different stages of HF based on the molecular changes following XSB treatment. XSB had high cardioprotective efficacy in the pre-HF with reduced ejection fraction (HFrEF) stages, but had a weak or no effect in the post-HFrEF stages. This was supported by echocardiographic measurements showing that XSB decreased ejection fraction and fractional shortening in HF. XSB administration improved cardiac function in the pre- and post-HFrEF mouse model, ameliorated deleterious changes to the morphology and subcellular structure of cardiomyocytes, and reduced cardiac fibrosis. Proteomics analysis showed that XSB intervention exclusively targeted thrombomodulin (THBD) and stromal interaction molecule 1 (STIM1) proteins when administered to the mice for both 8 and 6 weeks. Furthermore, XSB intervention for 8, 6, and 4 weeks after MI induction increased the expression of fibroblast growth factor 1 (FGF1) and decreased arrestin ß1 (ARRB1), which are classic biomarkers of cardiac fibroblast transformation and collagen synthesis, respectively. Overall, the study suggests that early intervention with XSB could be an effective strategy for preventing HFrEF and highlights potential therapeutic targets for further investigation into HFrEF remediation strategies.


Subject(s)
Heart Failure , Myocardial Infarction , Animals , Mice , Heart Failure/drug therapy , Heart Failure/metabolism , Stroke Volume , Fibroblast Growth Factor 1/metabolism , Arrestin/metabolism , Stromal Interaction Molecule 1 , Thrombomodulin , Myocardial Infarction/drug therapy
5.
Nutrients ; 15(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049535

ABSTRACT

(1) Background: Exercise is effective in promoting and maintaining bone mass. The aim of this study was to detect the exercise-induced metabolic changes in bone tissue of zebrafish. (2) Methods: Thirty-eight zebrafish (Danio rerio, six months old) were analyzed. The exercise group (n = 19) received 8 weeks of counter-current swimming training. The control group (n = 19) was not subjected to exercise. Mineralization was quantified, and alkaline phosphatase (Alp) and anti-tartrate acid phosphatase (Trap) activities were estimated (n = 12). The metabolomics (n = 12) and transcriptomics (n = 14) data of bone tissue were used for the integration analyses. (3) Results: The results showed that the exercise training improved the bone mineralization of zebrafish, e.g., the exercise group (5.74 × 104 ± 7.63 × 103) had a higher mean optical density than the control group (5.26 × 104 ± 8.56 × 103, p = 0.046) for the caudal vertebrae. The amount of mineralized matrix in scales of the exercised zebrafish was also higher (0.156 ± 0.012 vs. 0.102 ± 0.003, p = 0.005). Both histological staining and biochemical analysis revealed increased Alp activity (0.81 ± 0.26 vs. 0.76 ± 0.01, p = 0.002) and decreased Trap activity (1.34 ± 0.01 vs. 1.36 ± 0.01, p = 0.005) in the exercise group. A total of 103 different metabolites (DMs, VIP ≥ 1, fold change (FC) ≥ 1.20 or ≤0.83, p < 0.050) were identified. Alanine, aspartate and glutamate metabolism, ß-alanine metabolism, pyrimidine metabolism, and pantothenate and CoA biosynthesis were the significantly enriched metabolic pathways (p < 0.050). A total of 35 genes (q ≤ 0.050 (BH), |Log2FC| ≥ 0.5) were coenriched with the 103 DMs in the four identified pathways. Protein-protein interaction network analysis of the 35 genes showed that entpd3, entpd1, and cmpk2 were the core genes. (4) Conclusions: The results of this study suggest that alanine, aspartate and glutamate metabolism, ß-alanine metabolism, pyrimidine metabolism, and pantothenate and CoA biosynthesis contributed to exercise-induced improvements in bone mass.


Subject(s)
Transcriptome , Zebrafish , Animals , Aspartic Acid , Metabolomics , Alanine , beta-Alanine , Pyrimidines , Glutamates
6.
Nutrients ; 14(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36235841

ABSTRACT

(1) Background: Optimal bone mass accumulation during adolescence is crucial for maximising peak bone mass during adulthood. Dietary antioxidant vitamins may contribute to bone mass accumulation. This 2.5-year-long longitudinal study aimed to evaluate the relationships between dietary vitamin A, C, and E intakes and the annual changes in bone parameters among Chinese adolescents. (2) Method: Subjects aged 10-18 years (n = 1418) were recruited from a secondary school in Jiangmen, China. Dietary vitamin A, C, and E intakes were assessed using 24 h dietary records over 3 consecutive days. The Sahara Clinical Bone Sonometer was used to measure the broadband ultrasound attenuation (BUA) and the speed of sound (SOS). Their annual changes were then calculated (i.e., BUA%/year, SOS%/year). The associations were detected after adjusting for the baseline bone phenotype; age; sex; weight; height; pubertal stage; physical activity; and dietary intakes of vitamin D, calcium and energy. (3) Results: A curvilinear relationship was found between the dietary intake of vitamin C and BUA%/year (p = 0.026); further analyses in the subgroups revealed that this relationship was observed in male adolescents (p = 0.012). A positive association was observed only in boys with a dietary vitamin C intake of ≥159.01 mg/day (ß = 0.395, p = 0.036). Moreover, a linear positive association was shown between the dietary intake of vitamin E and BUA%/year in female adolescents (ß = 0.082, p = 0.033). (4) Conclusion: Our findings indicated that dietary vitamin C intake has a threshold effect on bone mass gain in male adolescents and that dietary vitamin E intake could be a positive predictor of bone mass gain in female adolescents.


Subject(s)
Antioxidants , Calcaneus , Animals , Ascorbic Acid , Bone Density , Calcaneus/diagnostic imaging , Calcium , Eating , Female , Longitudinal Studies , Male , Ultrasonography , Vitamin A , Vitamin D , Vitamin E , Vitamins
7.
Front Pharmacol ; 13: 1077249, 2022.
Article in English | MEDLINE | ID: mdl-36618917

ABSTRACT

Background: Skeletal muscles are organs with high energy requirements, especially during vigorous exercise. Adequate mitochondrial function is essential to meet the high energy needs of skeletal muscle cells. Recent studies have reported that red ginseng can significantly improve chronic fatigue; however, the specific mechanism of action is still not clear. Methods: A chronic fatigue syndrome mouse model was developed using C57BL/6J mice through long-term compound stimulation of stress factors. Following this, the animals were orally administered 200, 400, or 600 mg/kg red ginseng extracts for 28 days. Skeletal muscle lactate acid, serum lactate dehydrogenase, urea concentrations, ATP level, mitochondrial membrane potential, activities of Na+-K+-ATPase and cytochrome c oxidase were determined using assay kits or an automatic biochemical analyser detection system. Skeletal muscle mitochondria morphology was observed using electron microscopy and the expression of p-AMPK, PGC-1α, ACO2 and complex I in skeletal muscle protein was determined by western blotting. Results: Oral administration of 400 or 600 mg/kg red ginseng extract in mice with chronic fatigue reduced lactic acid, lactate dehydrogenase and urea, rescued the density and morphology of skeletal muscle mitochondria, increased the activities of Na+-K+-ATPase and cytochrome c oxidase, and activated the AMPK/PGC-1α cascade pathway, resulting in improved skeletal muscle mitochondrial function by restoring ATP level, mitochondrial membrane potential, complex I and mitochondrial biogenesis. Conclusion: The anti-fatigue effects of red ginseng are partly related to its potent mitochondrial improving activity, including decreasing mitochondrial swelling and mitochondrial membrane permeability, increasing mitochondrial biogenesis, thus ameliorating mitochondrial dysfunction.

8.
Article in English | MEDLINE | ID: mdl-34831882

ABSTRACT

BACKGROUND: Bone mass acquisition during growth is a major determinant of the risk of developing osteoporosis later in life. Body composition is an anthropometric determinant of bone mineral density (BMD) and significantly influences its development during childhood and adolescence. OBJECTIVE: This study aimed to systematically examine the association between body composition and bone mineral density in children and adolescents. METHODS: Observational studies addressing this association were identified from PubMed (MEDLINE), Embase, Scopus and the Cochrane Library (up to January 2021). The study populations consisted of healthy children and adolescents. The DerSimonian and Laird method was used to compute pooled estimates of effect size and the respective 95% confidence intervals for upper limbs, femoral neck (FN), lumbar spine (LS) and total body, respectively. Subgroup analyses were further performed based on age, sex and ethnicity. RESULTS: Thirty-one published studies were eligible for inclusion in this systematic review and meta-analysis, including three longitudinal studies. The combined population from all the studies amounted to 21,393 (11,205 males and 10,188 females). The pooled estimates of the correlation coefficients for lean mass (LM) and BMD ranged from 0.53 to 0.74 (p < 0.050), and the pooled regression coefficients ranged from 0.23 to 0.79 for FN, LS and total body (p < 0.050). For fat mass (FM), the pooled correlation coefficients ranged from 0.10 to 0.50 (p < 0.050) and the pooled regression coefficient was only significant for FN BMD with a weak strength (pooled ß = 0.07, p < 0.050). The pooled regression coefficients for body fat percentage (BF%) were between -0.54 and -0.04 (p < 0.050). The subgroup analysis revealed a stronger association in Asians than in Caucasians for LM and in males compared to females for BF% (p < 0.050). CONCLUSIONS: This systematic review and meta-analysis supports a positive association between LM and BMD. BF% appears to have a deleterious effect on bone acquisition in children and adolescents.


Subject(s)
Bone Density , Osteoporosis , Absorptiometry, Photon , Adolescent , Body Composition , Child , Female , Femur Neck , Humans , Lumbar Vertebrae , Male , Observational Studies as Topic
9.
Nutrients ; 13(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202423

ABSTRACT

BACKGROUND: Bone mineral acquisition during adolescence is crucial for maximizing peak bone mass. Fat mass (FM) and bone mass are closely related. This study investigated the association of FM distribution with bone mass in Chinese male adolescents. METHOD: A total of 693 male adolescents aged 10-18 years were recruited from a secondary school in Jiangmen, China. Their bone mass and body composition were measured by quantitative ultrasound and bioelectrical impedance analysis, respectively. The associations of the measures of fat distribution with bone parameters, i.e., broadband ultrasound attenuation, speed of sound (SOS), and stiffness index (SI), were analyzed using multiple linear regression. Age, height, body mass index, stage of puberty, physical activity, sedentary behavior, dietary energy intake, and dietary calcium and vitamin D intake were adjusted in the model. Further subgroup analyses of prepubertal and pubertal participants were conducted. RESULTS: The measures of fat distribution showed negative associations with SOS and SI in total subjects (p < 0.010). In prepubertal boys, the measures of fat distribution were only associated with SOS (ß = -0.377 to -0.393, p < 0.050). In pubertal boys, the measures of fat distribution had associations with all bone parameters (ß = -0.205 to -0.584, p < 0.050). The strongest association was between trunk FM and SOS (ß = -0.584, p < 0.001). CONCLUSION: This study supported that the measures of fat distribution were negatively associated with bone parameters in Chinese male adolescents. Trunk FM had the strongest association with bone parameter. These associations appear to be stronger in pubertal boys than in prepubertal boys.


Subject(s)
Body Composition/physiology , Body Fat Distribution/statistics & numerical data , Body Mass Index , Bone Density , Puberty/physiology , Adolescent , Calcium, Dietary/analysis , Child , China , Diet/statistics & numerical data , Electric Impedance , Energy Intake , Exercise , Humans , Male , Sedentary Behavior , Ultrasonography , Vitamin D/analysis
10.
Pharmacol Ther ; 216: 107698, 2020 12.
Article in English | MEDLINE | ID: mdl-33039419

ABSTRACT

The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.


Subject(s)
Biological Products/therapeutic use , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Animals , Biological Products/adverse effects , Cardiovascular Agents/adverse effects , Drug Combinations , Drugs, Chinese Herbal/adverse effects , Humans , Legislation, Drug , Patents as Topic
11.
Front Pharmacol ; 11: 593693, 2020.
Article in English | MEDLINE | ID: mdl-33603663

ABSTRACT

Portulaca oleracea L., known as the "vegetable for long life," is an annual succulent herb that is widely distributed worldwide. Many clinical and experimental studies have demonstrated that purslane seed (MCXZ) can be used as an adjunctive and alternative therapy for the treatment of diabetes mellitus (DM). However, the underlying active constituents and pharmacological mechanisms through which MCXZ exerts effects in DM remain unclear. In the present study, we confirmed that MCXZ treatment resulted in hypoglycemic activity, lowering the fasting blood glucose and glycated hemoglobin levels in streptozotocin-induced diabetic mice. Then, ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry was used to systematically analyze the chemical profile of MCXZ, resulting in the identification of 84 constituents, including 31 organic acids and nine flavonoids. Finally, the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine was employed to analyze the key active components of MCXZ and the molecular mechanisms through which these components acted in DM. Ten key active compounds were identified based on the topological importance of their corresponding putative targets within the known DM-associated therapeutic target network of known MCXZ putative targets. Functionally, these candidate targets play critical anti-hyperlipidemia, anti-hyperglycemia, immunity regulation, and inflammatory roles involving DM-related pathways, such as the vascular endothelial growth factor (VEGF) signaling pathway and Fc gamma R-mediated phagocytosis, which indicated that MCXZ exhibited anti-diabetic activity through multi-faced actions.

12.
J Nanosci Nanotechnol ; 19(9): 5810-5816, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-30961743

ABSTRACT

Non-woven nickel/carbon nanofibers (NW(Ni/C)NFs) are developed using a facile one-pot electrospinning method as a functional interlayer for rechargeable lithium-sulfur (Li-S) batteries. The functional interlayer of NW(Ni/C)NFs is sandwiched between a sulfur cathode and the separator and acts as a shuttle inhibitor to sulfur and polysulfides. Because of the sandwiched structure and the nickel additive, the Li-S cell shows better performance in terms of capacity utilization and reversibility. When the NW(Ni/C)NFs were calcined at 900 °C with 1 g of nickel salt additive, the discharge capacity of the cells was the best, and the initial discharge capacity was 1062 mAh g-1. With 200 charge-discharge cycles at 1 C, the discharge capacity of the cells remained above 910 mAh g-1, which is about 85.7% of its initial capacity. The improvement to the cells' electrochemical performance is attributed to the 3D architecture of the NW(Ni/C)NFs as a functional interlayer and to the appropriate amount of nickel addition. This provides a good conductive network with structural stability and the migrating polysulfide reduces the "shuttling phenomenon" during the charge-discharge processes.

13.
J Nanosci Nanotechnol ; 17(1): 661-65, 2017 Jan.
Article in English | MEDLINE | ID: mdl-29630329

ABSTRACT

The ultralong Cu@M (M = Co or Ni) nanowires (NWs) with core­shell structure were fabricated by a simple method by using the prepared Cu NWs as template. The crystal phases of Cu@M (M = Co or Ni) NWs were confirmed by X-ray diffraction (XRD). The morphology and microstructure of NWs were characterized by scanning electro microscopy (SEM) and transmission electro microscopy (TEM). Different diameters of Cu@M (M = Co or Ni) NWs varying from 120 to 550 nm with length about 10 µm were obtained via controlling the amounts of cobalt (nickel) nitrates in the reduction process. The magnetic properties of samples were measured using vibrating sample magnetometer (VSM). Results revealed that Cu NWs has a characteristic of paramagnetism after coating Co or Ni. The coercivity (H(c)) values of Cu@ Ni and Cu@Co NWs were 114.6 and 102.5 Oe, respectively. Possible formation mechanism for Cu@M (M = Co or Ni) NWs was preliminarily proposed.

14.
J Nanosci Nanotechnol ; 17(4): 2482-487, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29648771

ABSTRACT

Conventional lithium-sulfur batteries suffer from severe capacity fade, which is induced by low electron conductivity and high dissolution of intermediated polysulfides. Recent studies have shown the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and improved the performance for lithium sulfur batteries. In this work, we present the nickel coated multi-walled carbon nanotubes (Ni-MWNTs) as additive materials for elemental sulfur positive electrodes for lithium-sulfur rechargeable batteries. Compared with MWNTs, the obtained Ni-MWNTs/sulfur composite cathode demonstrate a reversible specific capacity approaching 545 mAh after 200 cycles at a rate of 0.5C as well as improved cycling stability and excellent rate capacity. The improved electrochemical performance can be attributed to the fact the MWNTs shows a vital role on polysulfides adsorption and nickel has a catalytic effect on the redox reactions during charge­discharge process. Meanwhile, the Ni-MWNTs is a good electric conductor for sulfur cathode.

15.
J Surg Res ; 186(1): 436-45, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24120240

ABSTRACT

BACKGROUND: Bornyl acetate is a bicyclic monoterpene present in numerous conifer oils. In this study, we aimed at clarifying the potential anti-inflammatory function and mechanism of bornyl acetate by using lipopolysaccharide (LPS)-induced acute lung injury murine model and RAW 264.7 cells. MATERIALS AND METHODS: RAW 264.7 cells were pretreated with bornyl acetate 1 h before LPS stimulation and cell-free super supernatants were collected to measure cytokine concentrations. To induce acute lung injury, BALB/c mice were injected intranasally with LPS and treated with bornyl acetate 1 h before LPS stimulation. Seven hours after administration, the bronchoalveolar lavage fluid (BALF) was collected for measuring the cell count and cytokine production. We collected lungs for assaying wet-to-dry weight ratio, myeloperoxidase activity, and histologic changes. The extent of phosphorylation of mitogen-activated protein kinases and nuclear factor κB was detected by Western blot. RESULTS: Our results showed that bornyl acetate downregulated the levels of proinflammatory cytokines in vitro and in vivo; reduced the number of total cells, neutrophils, and macrophages in BALF; attenuated the histologic alterations in the lung; decreased the wet-to-dry weight ratio in BALF; and suppressed NF-kappa-B inhibitor alpha, extracellular regulated protein kinases, c-JunN-terminal kinase, p38 mitogen-activated protein kinase activation. CONCLUSIONS: These findings suggested that bornyl acetate may be developed as a preventive agent for lung inflammatory diseases.


Subject(s)
Camphanes/pharmacology , Peroxidase/metabolism , Pneumonia/prevention & control , Acute Lung Injury/pathology , Animals , Cells, Cultured , Cytokines/biosynthesis , Lung/drug effects , Lung/pathology , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/physiology , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism
16.
Int Immunopharmacol ; 16(2): 139-47, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23623941

ABSTRACT

Prime-O-glucosylcimifugin is an active chromone isolated from Saposhnikovia root which has been reported to have various activities, such as anti-convulsant, anticancer, anti-inflammatory properties. The purpose of this study was to evaluate the effect of prime-O-glucosylcimifugin on acute lung injury (ALI) induced by lipopolysaccharide in mice. BALB/c mice received intraperitoneal injection of Prime-O-glucosylcimifugin 1h before intranasal instillation (i.n.) of lipopolysaccharide (LPS). Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and interleukin (IL)-6 in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Pulmonary histological changes were evaluated by hematoxylin-eosin, myeloperoxidase (MPO) activity in the lung tissue and lung wet/dry weight ratios were observed. Furthermore, the mitogen-activated protein kinases (MAPK) signaling pathway activation and the phosphorylation of IκBα protein were determined by Western blot analysis. Prime-O-glucosylcimifugin showed promising anti-inflammatory effect by inhibiting the activation of MAPK and NF-κB signaling pathway.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Monosaccharides/therapeutic use , Xanthenes/therapeutic use , Acute Lung Injury/etiology , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/pharmacology , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Cytokines/immunology , Lipopolysaccharides , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/immunology , Monosaccharides/pharmacology , NF-kappa B/immunology , Xanthenes/pharmacology
17.
J Gen Virol ; 94(Pt 2): 276-283, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23114630

ABSTRACT

Rabies is an acute viral infection of the central nervous system and is typically fatal in humans and animals; however, its pathogenesis remains poorly understood. In this study, the morphological changes of dendrites and dendritic spines in the CA1 region of the hippocampus were investigated in mice that were infected intracerebrally with an MRV strain of the street rabies virus. Haematoxylin and eosin and fluorescence staining analysis of brain sections from the infected mice showed very few morphological changes in the neuronal bodies and neuronal processes. However, we found a significant decrease in the number of dendritic spines. Primary neuronal cultures derived from the hippocampus of mice (embryonic day 16.5) that were infected with the virus also showed an obvious decrease in the number of dendritic spines. Furthermore, the decrease in the number of dendritic spines was related to the depolymerization of actin filaments (F-actin). We propose that the observed structural changes can partially explain the severe clinical disease that was found in experimental models of street rabies virus infections.


Subject(s)
Actins/metabolism , Hippocampus/pathology , Neurons/virology , Rabies virus/pathogenicity , Animals , Cells, Cultured , Dendrites/virology , Fluorescent Antibody Technique , Hippocampus/virology , Histocytochemistry , Immunohistochemistry , Mice , Mice, Inbred ICR , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...