Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 167: 115599, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783150

ABSTRACT

B-lymphocytopenia among myelosuppression is the most intractable side effect of chemotherapy. Here, we investigated ways to alleviate 5-fluorouracil-caused stress hematopoietic impairment. We found that intraperitoneally injected ASP (Angelica sinensis polysaccharides) (100 mg/kg per day), one main active ingredient of Angelica sinensis, for consecutive 7 days, significantly recovered mouse bone marrow pro-B and pre-B cells, reversed the capacity of CFU-PreB colony forming, thus alleviating B cell reduction in the spleen and peripheral blood, as well as ameliorating immunoglobin from spleen and serum. The mechanism is related to the protective effects of ASP on IL-7 producing cells, including perivascular Leptin+ and CXCL12+ mesenchymal stem and progenitor cells (MSPCs), thus promoting IL-7 production, and activating IL-7R-mediated STAT5, PI3K-AKT signaling, including survival signals and EBF1, PAX5 transcription factor expression. Additionally, ASP's IL-7 promoting effect was demonstrated to be associated with maintaining osteogenesis/adipogenesis balance of MSPCs via the NRF2 antioxidant pathway. Collectively, our findings indicate that ASP reverse stress B-lymphocytopenia via improving Nrf2 signaling, promoting IL-7 production in MSPCs, and subsequently maintaining survival, proliferation, and differentiation of B cell progenitors, which may represent a promising therapeutic strategy.


Subject(s)
Angelica sinensis , Lymphopenia , Mice , Animals , Interleukin-7/pharmacology , Fluorouracil/pharmacology , NF-E2-Related Factor 2 , Phosphatidylinositol 3-Kinases , Oxidative Stress , Stem Cells , Polysaccharides/pharmacology
2.
Biomed Pharmacother ; 162: 114602, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37018993

ABSTRACT

Angelica Sinensis polysaccharide (ASP), the main active component of Angelica sinensis, possesses antioxidative and anti-apoptotic properties. In this study, we have investigated the antagonistic effect of ASP on 5-FU-induced injury of mouse spleen in vivo and splenocytes in vitro, and its possible mechanism. Our results showed that ASP inhibited 5-FU-induced decreases in spleen weight and organ index in mice, restored the number of peripheral blood leukocytes and lymphocytes, repaired spleen structure disorder and functional impairment, rescued serum IL-2, IL-6, and IFN-γ levels, and relieved 5-FU-induced mitochondrial swelling, reduced the oxidant accumulation including MDA and ROS, whereas increasing the activities of GSH, SOD and CAT. The mechanism may be related to ASP downregulation of Keap1 protein expression thus motivating the nuclear translocation of Nrf2. Furthermore, ASP alleviated the apoptosis of spleens in vivo and splenocytes in vitro, and reactivated PI3K / AKT signalling. In conclusion, the protective effect of ASP on spleens and splenocytes may be related to the reduction of oxidative stress and apoptosis via reactivation of Nrf2 and PI3K/AKT pathways. This study has provided a new protective agent for minimizing the spleen injury caused by 5-FU and a new idea for improving the prognosis of chemotherapy patients.


Subject(s)
Angelica sinensis , Mice , Animals , Angelica sinensis/chemistry , Kelch-Like ECH-Associated Protein 1 , Spleen , Fluorouracil/pharmacology , NF-E2-Related Factor 2 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Oxidative Stress , Apoptosis , Polysaccharides/pharmacology
3.
Redox Rep ; 28(1): 2206197, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37102430

ABSTRACT

ABSTRACTObjectives: High reactive oxygen species (ROS) levels lead to cell death, and the testes are among the most vulnerable organs to oxidative damage. Rg1, an active ingredient extracted from the natural medicine ginseng, has potential anti-inflammatory, antioxidant and antiapoptotic properties. Our previous studies showed that Rg1 can effectively improve spermatogenic function in mice, but the specific mechanism remains unclear. The purpose of this study was to investigate the effect of Rg1 on oxidative stress and spermatogonium apoptosis in D-gal-induced testicular toxicity and elucidate the associated mechanism.Methods: Male C57BL/6 mice at 6-8 weeks of age were intraperitoneally injected with D-gal (200 mg/kg) for 42 days to establish a testicular injury model, and on day 16, 40 mg/kg Rg1-rich saline was injected intraperitoneally. Concurrently, we established an in vitro model of D-gal-damaged spermatogonia, which was treated with Rg1.Results: We found that treatment with the ginsenoside Rg1 reduced D-gal-induced oxidative stress and spermatogonium apoptosis in vivo and in vitro. Mechanistically, we found that Rg1 activated Akt/bad signaling and reduced D-gal-induced spermatogonium apoptosis.Discussion: We provide evidence showing that the antioxidant effect of Rg1 is mediated by the Akt/GSK-3ß/NRF2 axis. Based on these findings, we consider Rg1 a potential treatment for testicular oxidative damage.


Subject(s)
Proto-Oncogene Proteins c-akt , Testis , Animals , Male , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Apoptosis , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Mice, Inbred C57BL , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , Spermatogonia/metabolism , Testis/metabolism
4.
Stem Cells Int ; 2023: 7074703, 2023.
Article in English | MEDLINE | ID: mdl-36845966

ABSTRACT

Ginsenoside Rg1 (Rg1) is purified from ginseng with various pharmacological effects, which might facilitate the biological behavior of human amnion-derived mesenchymal stem/stromal cells (hAD-MSCs). This study is aimed at investigating the effects of Rg1 on the biological behavior, such as viability, proliferation, apoptosis, senescence, migration, and paracrine, of hAD-MSCs. hAD-MSCs were isolated from human amnions. The effects of Rg1 on the viability, proliferation, apoptosis, senescence, migration, and paracrine of hAD-MSCs were detected by CCK-8, EdU, flow cytometry, SA-ß-Gal staining, wound healing, and ELISA assays, respectively. The protein expression levels were detected by western blot. Cell cycle distribution was evaluated using flow cytometry. We found that Rg1 promoted hAD-MSC cycle progression from G0/G1 to S and G2/M phases and significantly increased hAD-MSC proliferation rate. Rg1 activated PI3K/AKT signaling pathway and significantly upregulated the expressions of cyclin D, cyclin E, CDK4, and CDK2 in hAD-MSCs. Inhibition of PI3K/AKT signaling significantly downregulated the expressions of cyclin D, cyclin E, CDK4, and CDK2, prevented cell cycle progression, and reduced hAD-MSC proliferation induced by Rg1. hAD-MSC senescence rate was significantly increased by D-galactose, while the elevated hAD-MSC senescence rate induced by D-galactose was significantly decreased by Rg1 treatment. D-galactose significantly induced the expressions of senescence markers, p16INK4a, p14ARF, p21CIP1, and p53 in hAD-MSCs, while Rg1 significantly reduced the expressions of those markers induced by D-galactose in hAD-MSCs. Rg1 significantly promoted the secretion of IGF-I in hAD-MSCs. Rg1 reduced the hAD-MSC apoptosis rate. However, the difference was not significant. Rg1 had no influence on hAD-MSC migration. Altogether, our results demonstrate that Rg1 can promote the viability, proliferation, and paracrine and relieve the senescence of hAD-MSCs. PI3K/AKT signaling pathway is involved in the promotive effect of Rg1 on hAD-MSC proliferation. The protective effect of Rg1 on hAD-MSC senescence may be achieved via the downregulation of p16INK4A and p53/p21CIP1 pathway.

5.
Article in English | MEDLINE | ID: mdl-36267094

ABSTRACT

Background: An important feature of aging cells is the gradual loss of physiological integrity. As aging progresses, MSCs change preferring to differentiate toward adipocytes rather than osteoblasts. Oxidative stress accumulation is an important factor in age-related bone loss. Many experiments have demonstrated the good therapeutic effect of Ginsenoside (Rg1) on oxidative stress injury. In this study, we investigated the effect of Rg1 on the osteogenic-adipogenic differentiation balance of bone marrow mesenchymal stem cells (BMMSC). Objective: To analyze the potential application value of Rg1 in the treatment of senile osteoporosis. Methods: BMMSCs were isolated from healthy donors of different ages and identified based on isotype and by multi-differentiation induction. Rg1 was used to treat BMMSCs, The differentiation propensity was analyzed by induction of differentiation assay. Antioxidant capacity of BMMSCs as measured by oxidative stress product assay Related mechanism studies were confirmed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), immunofluorescence, western blotting, and inhibitor treatment. Moreover, Observation of the effects of Rg1 on aging BMMSCs under in vivo conditions by treatment of aged mice with Rg1 injections. Results: Rg1 treatment rescued age-induced switch of BMMSCs differentiation fate in vitro. In elderly people, Rg1 markedly increased osteogenic differentiation of BMMSCs by decreasing oxidative stress, while inhibiting adipogenic differentiation. However, this effect was abolished in BMMSCs by an Nrf2-inhibitor. Notably, aging mice showed a reduction in adipocyte distribution in the bone marrow and a decrease in oxidative stress products after a 3-month period of Rg1 treatment. Conclusion: We have uncovered a novel function for Rg1 that involves attenuating bone loss via Nrf2 antioxidant signaling, which in turn may potentially be utilized as a therapeutic agent for improving osteogenic differentiation in aging BMMSCs.

6.
Cell Transplant ; 31: 9636897221129171, 2022.
Article in English | MEDLINE | ID: mdl-36282038

ABSTRACT

Premature ovarian insufficiency (POI) can cause multiple sequelae and is currently incurable. Mesenchymal stem cell (MSC) transplantation might provide an effective treatment method for POI. However, the clinical application of systemic MSC transplantation is limited by the low efficiency of cell homing to target tissue in vivo, including systemic MSC transplantation for POI treatment. Thus, exploration of methods to promote MSC homing is necessary. This study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the migration and homing of transplanted human amnion-derived MSCs (hAD-MSCs) to ovaries in rats with chemotherapy-induced POI. For LIPUS treatment, hAD-MSCs were exposed to LIPUS or sham irradiation. Chemokine receptor expressions in hAD-MSCs were detected by polymerase chain reaction (PCR), Western blot, and immunofluorescence assays. hAD-MSC migration was detected by wound healing and transwell migration assays. Cyclophosphamide-induced POI rat models were established to evaluate the effects of LIPUS on the homing of systemically transplanted hAD-MSCs to chemotherapy-induced POI ovaries in vivo. We found that hAD-MSCs expressed chemokine receptors. The LIPUS promoted the expression of chemokine receptors, especially CXCR4, in hAD-MSCs. SDF-1 induced hAD-MSC migration. The LIPUS promoted hAD-MSC migration induced by SDF-1 through SDF-1/CXCR4 axis. SDF-1 levels significantly increased in ovaries induced by chemotherapy in POI rats. Pretreating hAD-MSCs with LIPUS increased the number of hAD-MSCs homing to ovaries in rats with chemotherapy-induced POI to some extent. However, the difference was not significant. Both hAD-MSC and LIPUS-pretreated hAD-MSC transplantation reduced ovarian injuries and improved ovarian function in rats with chemotherapy-induced POI. CXCR4 antagonist significantly reduced the number of hAD-MSCs- and LIPUS-pretreated hAD-MSCs homing to POI ovaries, and further reduced their efficacy in POI treatment. According to these findings, pretreating MSCs with LIPUS before transplantation might provide a novel, convenient, and safe technique to explore for improving the homing of systemically transplanted MSCs to target tissue.


Subject(s)
Antineoplastic Agents , Menopause, Premature , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Female , Rats , Humans , Animals , Amnion/metabolism , Mesenchymal Stem Cells/metabolism , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/therapy , Mesenchymal Stem Cell Transplantation/methods , Receptors, CXCR4/metabolism , Menopause, Premature/metabolism , Ultrasonic Waves , Cyclophosphamide
7.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077440

ABSTRACT

Ginsenoside Rg1 is an important active substance isolated from the root of ginseng. In previous studies, Rg1 has shown excellent therapeutic effects in antioxidant, anti-inflammatory, and metabolic modulation. However, the therapeutic targets of Rg1 are still unknown. In this study, we investigated the therapeutic effects of Rg1 on oxidative stress-related liver damage. The oxidative stress damage model was achieved by intraperitoneal injection of D-galactose (D-gal) for 42 consecutive days in C57BL/6J mice. Rg1 treatment started on Day 16. Body weight, liver weight, degree of hepatic oxidative stress damage, serum lipid levels, and hepatic lipid and glucose metabolism were measured. Proteomics analysis was used to measure liver protein expression. The differential expression proteins were analyzed with bioinformatics. The results showed that Rg1 treatment attenuated liver damage from oxidative stress, reduced hepatic fat accumulation, promoted hepatic glycogen synthesis, and attenuated peripheral blood low-density lipoprotein (LDL), cholesterol (CHO), and triglycerides (TG) levels. Proteomic analysis suggested that Rg1 may regulate hepatocyte metabolism through ECM-Receptor, the PI3K-AKT pathway. The epidermal growth factor receptor (EGFR) and activator of transcription 1 (STAT1) may be the key protein. In conclusion, this study provides an experimental basis for further clarifying the specific mechanism of Rg1 in the treatment of oxidative stress damage-related liver disease.


Subject(s)
Ginsenosides , Liver Diseases , Animals , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Lipids/pharmacology , Liver Diseases/drug therapy , Mice , Mice, Inbred C57BL , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proteomics
8.
Stem Cell Res Ther ; 13(1): 79, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197118

ABSTRACT

BACKGROUND: Chemotherapy can induce premature ovarian insufficiency (POI). POI causes multiple sequelae and is currently incurable. As shown in our previous studies, systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) home to ovaries with chemotherapy-induced POI and subsequently reduce ovarian injury and improve ovarian function in rats with POI. However, the cellular mechanisms that direct the migration and homing of hAD-MSCs to ovaries with chemotherapy-induced POI are incompletely understood. This study investigated the role of the SDF-1/CXCR4 axis in the migration and homing of systemically transplanted hAD-MSCs to ovaries with chemotherapy-induced POI and its relevant downstream signalling pathways. METHODS: CXCR4 expression in hAD-MSCs was assessed using Western blotting and immunofluorescence staining. hAD-MSC migration was tested using Transwell migration assays. SDF-1 levels were detected using ELISA. Seventy-two female SD rats were randomly divided into the control, POI, hAD-MSCs and hAD-MSCs + AMD3100 groups. Cyclophosphamide was used to establish rat POI models. For inhibitor treatment, hAD-MSCs were pretreated with AMD3100 before transplantation. PKH26-labeled hAD-MSCs were injected into the tail vein of POI rats 24 h after chemotherapy. After hAD-MSC transplantation, the homing of hAD-MSCs to ovaries and ovarian function and pathological changes were examined. We further investigated the molecular mechanisms by detecting the PI3K/Akt and ERK1/2 signalling pathways. RESULTS: hAD-MSCs expressed CXCR4. SDF-1 induced hAD-MSC migration in vitro. SDF-1 levels in ovaries and serum were significantly increased in rats with chemotherapy-induced POI, and ovaries with POI induced the homing of hAD-MSCs expressing CXCR4. Blocking the SDF-1/CXCR4 axis with AMD3100 significantly reduced the number of hAD-MSCs homing to ovaries with POI and further reduced their efficacy in POI treatment. The binding of SDF-1 to CXCR4 activated the PI3K/Akt signalling pathway, and LY294002 significantly inhibited hAD-MSC migration induced by SDF-1 in vitro. Moreover, inhibition of the PI3K/Akt signalling pathway significantly reduced the number of systemically transplanted hAD-MSCs homing to chemotherapy-induced ovaries in rats with POI. CONCLUSIONS: SDF-1/CXCR4 axis partially mediates the migration and homing of systemically transplanted hAD-MSCs to the ovaries of rats with chemotherapy-induced POI, and the PI3K/Akt signalling pathway might be involved in the migration and homing of hAD-MSCs mediated by the SDF-1/CXCR4 axis.


Subject(s)
Antineoplastic Agents , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Amnion/metabolism , Animals , Cell Movement , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Female , Humans , Mesenchymal Stem Cells/metabolism , Ovary/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , Rats, Sprague-Dawley , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism
9.
Free Radic Biol Med ; 174: 182-194, 2021 10.
Article in English | MEDLINE | ID: mdl-34364981

ABSTRACT

Senescence limits the characteristics and functionality of mesenchymal stem cells (MSCs), thereby severely restricting their application in tissue engineering. Here, we investigated ways to prevent MSCs from entering a state of senescence. We found that Rg1, an extract of natural ginseng, can reduce the expression of senescence markers in cultured cells in vitro and in various tissues in vivo. Simultaneously, ginsenoside Rg1 improved the antioxidant capacity of cells, and the senescence-inhibiting and antioxidant effect of Rg1 were associated with the activation of the nuclear factor E2-related factor 2 (NRF2) signaling pathway. Furthermore, Rg1 may activate the NRF2 pathway by increasing the interaction between P62 and KEAP1through P62 upregulation and AKT activation. Taken together, our findings indicate that Rg1 prevents cell senescence via NRF2 and AKT, and activation of AKT or NRF2 may thus represent therapeutic targets for preventing cell senescence.


Subject(s)
Mesenchymal Stem Cells , NF-E2-Related Factor 2 , Cellular Senescence , Ginsenosides , Mesenchymal Stem Cells/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
10.
JBRA Assist Reprod ; 24(3): 241-244, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32072993

ABSTRACT

OBJECTIVE: To study the value of oxygen consumption (OC) as a predictor of the developmental potential of D3 embryos in frozen embryo transfer (FET) cycles. METHODS: This observational study included 148 patients undergoing FET cycles with two embryos transferred per cycle. OC rates were examined by scanning electrochemical microscopy before embryo transfer. Implantation, clinical pregnancy, miscarriage, and live birth rates were calculated. RESULTS: A total of 296 embryos were transferred in 148 cycles, or two embryos per cycle. The embryos were divided into three groups based on OC: Group A included the cases in which the OC rate of each of the two transferred embryos was greater than 3.0 fmol/s; Group B included the cases in which the OC rate of one of the embryos was greater than 3.0 fmol/s and the OC rate of the other embryo was less than 3.0 fmol/s; and Group C included the cases in which the OC rates of the two embryos were less than 3.0 fmol/s. Higher live birth rates and lower miscarriage rates were observed in Group A (p<0.05). CONCLUSIONS: Our data suggest that OC is positively correlated with embryo developmental potential. Therefore, measuring the OC of human embryos may be useful in embryo assessment.


Subject(s)
Embryo Implantation/physiology , Embryo Transfer/methods , Embryonic Development/physiology , Oxygen Consumption/physiology , Adult , Birth Rate , Cryopreservation , Female , Humans , Pregnancy , Pregnancy Rate , Retrospective Studies
11.
Stem Cells Int ; 2015: 954120, 2015.
Article in English | MEDLINE | ID: mdl-26106432

ABSTRACT

The researches in the dynamic changes of the progress of HSCs aging are very limited and necessary. In this study, male C57BL/6 mice were divided into 5 groups by age. We found that the superoxide damage of HSPCs started to increase from the middle age (6 months old), with notably reduced antioxidation ability. In accordance with that, the senescence of HSPCs also started from the middle age, since the self-renewal and differentiation ability remarkably decreased, and senescence-associated markers SA-ß-GAL increased in the 6-month-old and the older groups. Interestingly, the telomere length and telomerase activity increased to a certain degree in the 6-month-old group. It suggested an intrinsic spontaneous ability of HSPCs against aging. It may provide a theoretical and experimental foundation for better understanding the senescence progress of HSPCs. And the dynamic biological characteristics of HSPCs senescence may also contribute to the clinical optimal time for antiaging drug intervention.

SELECTION OF CITATIONS
SEARCH DETAIL
...