Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Exp Parasitol ; 256: 108671, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081528

ABSTRACT

Legumains belonging to C_13 peptidase family of proteins, and are ubiquitously disseminated among all vertebrate and invertebrate organisms, and have been implicated in innumerable biological and cellular functionality. Herein, we characterized and evaluated immunoregulatory characteristics of Legumain-1 from Fasciola gigantica (Fg-LGMN-1) during its interaction with host immune cells. The isopropyl-ß-d-thiogalactopyranoside (IPTG) stimulated RFg-LGMN-1 protein was positively detected by rat serum containing anti-RFg-LGMN-1 polyclonal antibodies. Furthermore, the uptake of RFg-LGMN-1 by goat monocytes was successfully confirmed using Immunofluorescence Assay (IFA). The immunohistochemical analysis revealed the native localization of LGMN-1 protein on the periphery and internal structures such as suckers, pharynx, and genital pore of the adult parasite, thereby validating its presence in excretory-secretory (ES) products of F. gigantica. The RFg-LGMN-1 co-incubated with concanavalin-A (Con-A) stimulated the increase of interleukin 2 (IL-2), IL-10, and IL-17 in monocytes derived from peripheral blood mononuclear cells (PBMCs) in the concentration-dependent manner. However, the IL-4 cytokine in response to the RFg-LGMN-1 protein declined. These results illuminated the role of LGMN-1 during the parasite-host interface. Our findings elaborated additional evidence that Legumain protein play a role in the manipulating host immune responses during parasite infections. However, further evaluation of RFg-LGMN-1 protein in context of its immunomodulatory roles should be conducted to enhance our understandings of the mechanisms employed by F. gigantica to evade host immune responses.


Subject(s)
Fasciola , Fascioliasis , Animals , Rats , Monocytes , Leukocytes, Mononuclear/metabolism , Goats , Immunity
2.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4413-4420, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802867

ABSTRACT

The present study investigated the chemical constituents from the aerial parts of Glycyrrhiza uralensis. The ethanol extract of the aerial parts of G. uralensis was separated and purified by different column chromatographies such as macroporous resin, silica gel, and Sephadex LH-20, and through preparative HPLC and recrystallization. Thirteen compounds were isolated and identified as(2S)-6-[(Z)-3-hydroxymethyl-2-butenyl]-5,7,3'-trihydroxy-4'-methoxy-dihydroflavanone(1),(2S)-8-[(E)-3-hydroxymethyl-2-butenyl]-5,7,3',5'-tetrahydroxy-dihydroflavanone(2), α,α'-dihydro-5,4'-dihydroxy-3-acetoxy-2-isopentenylstilbene(3), 6-prenylquercetin(4), 6-prenylquercetin-3-methyl ether(5), formononetin(6), 3,3'-dimethylquercetin(7), chrysoeriol(8), diosmetin(9),(10E,12Z,14E)-9,16-dioxooctadec-10,12,14-trienoic acid(10), 5,7,3',4'-tetrahydroxy-6-prenyl-dihydroflavanone(11), naringenin(12), dibutylphthalate(13). Compounds 1-3 are new compounds, and compounds 10 and 13 are isolated from aerial parts of this plant for the first time.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza uralensis/chemistry , Plant Components, Aerial/chemistry
3.
J Integr Med ; 21(5): 413-422, 2023 09.
Article in English | MEDLINE | ID: mdl-37652781

ABSTRACT

Severe pneumonia is one of the most common infectious diseases and the leading cause of sepsis and septic shock. Preventing infection, balancing the patient's immune status, and anti-coagulation therapy are all important elements in the treatment of severe pneumonia. As multi-target agents, Xuebijing injection (XBJ) has shown unique advantages in targeting complex conditions and saving the lives of patients with severe pneumonia. This review outlines progress in the understanding of XBJ's anti-inflammatory, endotoxin antagonism, and anticoagulation effects. From the hundreds of publications released over the past few years, the key results from representative clinical studies of XBJ in the treatment of severe pneumonia were selected and summarized. XBJ was observed to effectively suppress the release of pro-inflammatory cytokines, counter the effects of endotoxin, and assert an anticoagulation effect in most clinical trials, which are consistent with experimental studies. Collectively, this evidence suggests that XBJ could play an important and expanding role in clinical medicine, especially for sepsis, septic shock and severe pneumonia. Please cite this article as: Zhang M, Zheng R, Liu WJ, Hou JL, Yang YL, Shang HC. Xuebijing injection, a Chinese patent medicine, against severe pneumonia: Current research progress and future perspectives. J Integr Med. 2023; 21(5): 413-422.


Subject(s)
Sepsis , Shock, Septic , Humans , Nonprescription Drugs , Shock, Septic/drug therapy , Sepsis/drug therapy , Endotoxins , Anticoagulants/therapeutic use
4.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5502-5507, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36471966

ABSTRACT

The present study explored the physiological mechanism of the effects of different pH treatments on the growth, physiological characteristics, and stachydrine biosynthesis of Leonurus japonicus to provide references for the cultivation and quality control of L. japonicus. Under hydroponic conditions, different pH treatments(pH 5,6,7,8) were set up. The growth, physiology, and the content of stachydrine and total alkaloids of L. japonicus, as well as the content of key intermediate products in stachydrine biosynthesis pathway(i.e., pyruvic acid, α-ketoglutaric acid, glutamic acid, and ornithine) were monitored to explore the physiological mechanism of the effects of pH on the growth and active components of L. japonicus. The results showed that L. japonicus. could grow normally in the pH 5-8 solution. The pH treatment of neutral acidity was more conducive to the accumulation of photosynthetic pigments and the increase in soluble protein in leaves of L. japonicus. to promote its growth and yield. However, since stachydrine is a nitrogen-containing pyrrolidine alkaloid, its synthesis involves the two key rate-limiting steps of nitrogen addition: reductive ammoniation reaction and Schiff base formation reaction. High pH treatments promote the synthesis and accumulation of substrates and products of the above two reactions, indicating that the alkaline environment can promote the nitrogen addition reaction, thereby promoting the biosynthesis and accumulation of stachydrine.


Subject(s)
Alkaloids , Leonurus , Leonurus/chemistry , Hydroponics , Nitrogen , Hydrogen-Ion Concentration
5.
Parasitol Res ; 120(8): 2805-2818, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34219189

ABSTRACT

Toxoplasma gondii can cross the blood-brain barrier and infect different regions of the brain including the hippocampus. In the present study, we examined the impact of Toxoplasma gondii infection on the metabolism of the hippocampus of female BALB/c mice compared to control mice using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariate analysis revealed significant differences between infected and control hippocampi and identified 25, 82, and 105 differential metabolites (DMs) in the infected hippocampi at 7, 14, and 21 days post-infection (dpi), respectively. One DM (sphingosyl-phosphocholine in the sphingolipid metabolism pathway) and 11 dysregulated pathways were detected at all time points post-infection, suggesting their important roles in the neuropathogenesis of T. gondii infection. These pathways were related to neural activity, such as inflammatory mediator regulation of TRP channels, retrograde endocannabinoid signaling, and arachidonic acid metabolism. Weighted correlation network analysis and receiver operating characteristic analysis identified 33 metabolites significantly associated with T. gondii infection in the hippocampus, and 30 of these were deemed as potential biomarkers for T. gondii infection. This study provides, for the first time, a global view of the metabolic perturbations that occur in the mouse hippocampus during T. gondii infection. The potential relevance of the identified metabolites and pathways to the pathogenesis of cognitive impairment and psychiatric disorders are discussed.


Subject(s)
Hippocampus/parasitology , Toxoplasmosis, Animal , Animals , Brain , Female , Hippocampus/metabolism , Mice , Mice, Inbred BALB C , Toxoplasma , Toxoplasmosis, Animal/metabolism
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(3): 703-708, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34105460

ABSTRACT

OBJECTIVE: To investigate the regulatory effects of RBM47 on HMGA2 and the function of RBM47 in human chronic myeloid leukemia cell K562. METHODS: K562 cells were transduction by the overexpressed and knockdown RBM47 lentiviral vector. CCK-8 assay was used to detect the effect of RBM47 on the proliferation of K562 cells. Flow cytometry assay was used to detect the effect of RBM47 on the cell cycle progression of K562 cells. RNA immunoprecipitation assay was used to detect the association between RBM47 and HMGA2 mRNA. RT-qPCR was used to detect the effects of RBM47 on the stability of HMGA2 mRNA. Western blot was used to evaluate the effect of RBM47 on HMGA2 protein expression. RESULTS: The overexpressed RBM47 could inhibit the proliferation and cell cycle progression of K562 cells. However, the inhibitation of RBM47 could improve the proliferation and cell cycle progression of K562 cells. RBM47 combined with HMGA2 mRNA could promote the degradation of HMGA2 mRNA. Thus, the overexpressed RBM47 could decrease the expression of HMGA2 protein in K562 cells. CONCLUSION: RNA binding protein RBM47 can inhibit the proliferation of K562 cells by regulating HMGA2 expression.


Subject(s)
HMGA2 Protein , RNA-Binding Proteins , Apoptosis , Cell Proliferation , HMGA2 Protein/genetics , Humans , K562 Cells , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
7.
Parasit Vectors ; 14(1): 276, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022913

ABSTRACT

BACKGROUND: The liver fluke Fasciola gigantica secretes excretory-secretory proteins during infection to mediate its interaction with the host. In this study, we investigated the immunomodulatory effects of a recombinant tegumental calcium-binding EF-hand protein 4 of F. gigantica (rFg-CaBP4) on goat monocytes. METHODS: The rFg-CaBP4 protein was induced and purified by affinity chromatography. The immunogenic reaction of rFg-CaBP4 against specific antibodies was detected through western blot analysis. The binding of rFg-CaBP4 on surface of goat monocytes was visualized by immunofluorescence assay. The localization of CaBP4 within adult fluke structure was detected by immunohistochemical analysis. The cytokine transcription levels in response to rFg-CaBP4 were examined using ABI 7500 real-time PCR system. The expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) in response to rFg-CaBP4 protein was analyzed using Flow cytometry. RESULTS: The isopropyl-ß-D-thiogalactopyranoside-induced rFg-CaBP4 protein reacted with rat sera containing anti-rFg-CaBP4 polyclonal antibodies in a western blot analysis. The adhesion of rFg-CaBP4 to monocytes was visualized by immunofluorescence and laser scanning confocal microscopy. Immunohistochemical analysis localized native CaBP4 to the oral sucker, pharynx, genital pore, acetabulum and tegument of adult F. gigantica. Co-incubation of rFg-CaBP4 with concanavalin A-stimulated monocytes increased the transcription levels of interleukin (IL)-2, IL-4, interferon gamma and transforming growth factor-ß. However, a reduction in the expression of IL-10 and no change in the expression of tumor necrosis factor-α were detected. Additionally, rFg-CaBP4-treated monocytes exhibited a marked increase in the expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) and a decrease in MHC-I expression, in a dose-dependent manner. CONCLUSIONS: These findings provide additional evidence that calcium-binding EF-hand proteins play roles in host-parasite interaction. Further characterization of the immunomodulatory role of rFg-CaBP4 should expand our understanding of the strategies used by F. gigantica to evade the host immune responses.


Subject(s)
Calcium-Binding Proteins/immunology , Fasciola/chemistry , Fasciola/immunology , Immunomodulation , Monocytes/immunology , Animals , Calcium-Binding Proteins/pharmacology , Cytokines/genetics , Cytokines/immunology , Fasciola/genetics , Fascioliasis/parasitology , Goats/immunology , Monocytes/drug effects , Recombinant Proteins/pharmacology
8.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1449-1459, 2021 Mar.
Article in Chinese | MEDLINE | ID: mdl-33787143

ABSTRACT

Chemical constituents from aerial parts of Glycyrrhiza uralensis were analyzed and identified using ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The chromatographic column of Waters Acquity UPLC BEH-C_(18)(2.1 mm×100 mm, 1.7 µm) was adopted, with acetonitrile-water(0.5% formic acid) as mobile phase at a flow rate of 0.2 mL·min~(-1). Data was collected in positive and negative modes of electrospray ionization(ESI). A total of 55 compounds, including 42 flavonoids, 9 stilbenes, 2 coumarins, 1 lignin and 1 phenolic acid, which were characterized in the aerial parts of G. uralensis based on accurate molecular mass information of molecular and product ions provided by UPLC-Q-Exactive Orbitrap-MS based on comparison with standard substances and references. It is an effective and accurate method to provide chemical information of constituents in aerial parts of G. uralensis, and can provide a reference for further study on pharmacodynamic material basis and resources development and utilization.


Subject(s)
Drugs, Chinese Herbal , Glycyrrhiza uralensis , Chromatography, High Pressure Liquid , Mass Spectrometry , Plant Components, Aerial
9.
Microb Pathog ; 151: 104751, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33482261

ABSTRACT

Blastocystis is one of the most common causative agents of intestinal diseases, which can cause enteric diseases in animals and humans. However, limited data is available on the prevalence or subtypes of Blastocystis infections in farmed pigs in southern China. In this study, a total of 396 fecal samples were collected from farmed pigs in three provinces in southern China in 2016, and screened for Blastocystis by PCR amplification of the small subunit rRNA (SSU rRNA) gene fragment. One hundred and seventy (42.93%) of the examined fecal samples were detected Blastocystis-positive, and two known zoonotic subtypes ST1 and ST5 were identified, with ST5 being the predominate subtype. Moreover, gender, age and region were considered as risk factors that associated with Blastocystis infection in farmed pigs. The present study revealed the prevalence and subtypes of Blastocystis infections in farmed pigs in southern China, which provided essential data for the control of Blastocystis infections in pigs, other animals and humans in China.


Subject(s)
Blastocystis Infections , Blastocystis , Animals , Blastocystis/genetics , Blastocystis Infections/epidemiology , Blastocystis Infections/veterinary , China/epidemiology , Feces , Genetic Variation , Phylogeny , Prevalence , Swine
10.
Vaccines (Basel) ; 8(3)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971770

ABSTRACT

The gastrointestinal nematode parasite Haemonchus contortus (H. contortus) is a resident of tropical and subtropical regions worldwide that imposes significant production losses, economic losses, and animal health issues in the small ruminant industry, particularly sheep and goats. Considerable efforts have been made to understand how immunity is elicited against H. contortus infection. Various potential vaccine antigens have been tested by different methods and strategies applied in animal models, and significant progress has been made in the development of vaccines against H. contortus. This review highlighted and shared the knowledge about the current understanding of host immune responses to H. contortus and ongoing challenges in the development of a protective, effective, and long-lasting vaccine against H. contortus infection. We have also pinpointed some achievements and failures in the development and testing of vaccines, which will establish a road map for future research directions to explore new effective vaccine candidates for controlling and preventing H. contortus infection.

11.
Front Microbiol ; 11: 1555, 2020.
Article in English | MEDLINE | ID: mdl-32765450

ABSTRACT

Toxoplasma gondii is a protozoan parasite with a remarkable neurotropism. We recently showed that T. gondii infection can alter the global metabolism of the cerebral cortex of mice. However, the impact of T. gondii infection on the metabolism of the cerebellum remains unknown. Here we apply metabolomic profiling to discover metabolic changes associated with T. gondii infection of the mouse cerebellum using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Multivariate statistics revealed differences in the metabolic profiles between the infected and control mouse groups and between the infected mouse groups as infection advanced. We also detected 10, 22, and 42 significantly altered metabolites (SAMs) in the infected cerebellum at 7, 14, and 21 days post infection (dpi), respectively. Four metabolites [tabersonine, arachidonic acid (AA), docosahexaenoic acid, and oleic acid] were identified as potential biomarker or responsive metabolites to T. gondii infection in the mouse cerebellum. Three of these metabolites (AA, docosahexaenoic acid, and oleic acid) play roles in the regulation of host behavior and immune response. Pathway analysis showed that T. gondii infection of the cerebellum involves reprogramming of amino acid and lipid metabolism. These results showcase temporal metabolomic changes during cerebellar infection by T. gondii in mice. The study provides new insight into the neuropathogenesis of T. gondii infection and reveals new metabolites and pathways that mediate the interplay between T. gondii and the mouse cerebellum.

12.
Parasitol Res ; 119(9): 2813-2819, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32583163

ABSTRACT

Cryptosporidium is an opportunistic protozoan parasite that can inhabit in the gastrointestinal tract of various hosts. Cryptosporidium infection in black-boned goats and black-boned sheep may pose a threat to the survival and productivity, causing considerable economic losses to the livestock industry. However, it is yet to know whether black-boned goats and black-boned sheep in China are infected with Cryptosporidium. Thus, the objective of the present study was to investigate the prevalence and associated risk factors of Cryptosporidium infection in black-boned goats and black-boned sheep in Yunnan province, China. A total of 590 fecal samples were obtained from black-boned goats and black-boned sheep from five counties in Yunnan province, and the prevalence and species distribution of Cryptosporidium were determined by amplification of the 18S rDNA fragment using the nested PCR. The overall Cryptosporidium prevalence was 13.2% (78/590), with 18.0% (55/305) in black-boned goats and 8.1% (23/285) in black-boned sheep. The age and sampling site were identified as main factors that result in significant differences in Cryptosporidium prevalence. Three species, namely C. muris, C. xiaoi, and C. ubiquitum, were identified in black-boned goats and black-boned sheep in the present study, with C. muris (46/78) as the predominant species. This is the first report of Cryptosporidium infection in black-boned goats and black-boned sheep in China, and the findings will facilitate better understanding, prevention, and control of Cryptosporidium infection in black-boned goats and black-boned sheep in China.


Subject(s)
Cryptosporidiosis/epidemiology , Cryptosporidium/isolation & purification , Goat Diseases/parasitology , Polymerase Chain Reaction/veterinary , Sheep Diseases/parasitology , Animals , China/epidemiology , Cryptosporidium/classification , Cryptosporidium/genetics , Feces/parasitology , Gastrointestinal Tract/parasitology , Goats/parasitology , Prevalence , RNA, Ribosomal, 18S/genetics , Risk Factors , Sheep/parasitology
13.
Infect Genet Evol ; 75: 104019, 2019 11.
Article in English | MEDLINE | ID: mdl-31470093

ABSTRACT

Enterocytozoon bieneusi and Giardia duodenalis are important opportunistic enteric zoonotic pathogens that cause diarrhoea and intestinal diseases in animals and humans. China is the largest producer of pigs, but whether Tibetan pigs, a unique pig breed in Tibet, are infected with E. bieneusi and G. duodenalis is unknown. Therefore, we conducted a molecular epidemiological survey to determine the prevalence of E. bieneusi and G. duodenalis in Tibetan pigs in Tibet, China, and identified the genotypes of these causative agents. A total of 345 faecal specimens were collected from Tibetan pigs from three Tibet counties (Milin, Cuona and Gongbujiangda), examined by nested PCR and sequenced utilizing genetic markers in the ribosomal internal transcribed spacer (ITS) region of the rRNA and glutamate dehydrogenase (gdh) gene for E. bieneusi and G. duodenalis, respectively. Moreover, using multilocus sequence typing, the subtypes of E. bieneusi were identified based on four loci (MS1, MS3, MS4 and MS7). A total of 41 (11.88%) faecal samples from Tibetan pigs were E. bieneusi-positive, and 2 (0.58%) were G. duodenalis-positive. The multivariate logistic regression analysis showed that age was considered a risk factor for Tibetan pig infection of E. bieneusi. Two novel (GB11, GB31) and four known E. bieneusi genotypes (EbpC, EbpD, PigEBITS5 and CHS12) were identified and were all classified as zoonotic group 1 according to the phylogenetic analysis. Two MLGs (MLGI and MLGII) were further identified in the E. bieneusi EbpC genotype by multilocus sequence typing analysis. In addition, two G. duodenalis assemblages (D and E) were found in the present study. To our knowledge, the current study is the first to detect the prevalence and perform genetic characterization of G. duodenalis in Tibetan pigs in Tibet, China. The results could provide essential data for controlling E. bieneusi and G. duodenalis infections in Tibetan pigs that are in contact with other animals and humans, as Tibetan pigs could be a potential source for human infection by these pathogens.


Subject(s)
Enterocytozoon/genetics , Giardia lamblia/genetics , Giardiasis/veterinary , Microsporidiosis/veterinary , Swine Diseases/epidemiology , Animals , Enterocytozoon/classification , Feces/microbiology , Genotype , Geography, Medical , Giardia lamblia/classification , Multilocus Sequence Typing , Phylogeny , Prevalence , Public Health Surveillance , Sequence Analysis, DNA , Swine , Swine Diseases/microbiology , Swine Diseases/parasitology , Tibet/epidemiology
14.
Front Immunol ; 10: 1707, 2019.
Article in English | MEDLINE | ID: mdl-31396222

ABSTRACT

Cathepsin B, a lysosomal cysteine protease, is thought to be involved in the pathogenesis of Fasciola gigantica infection, but its exact role remains unclear. In the present study, a recombinant F. gigantica cathepsin B (rFgCatB) protein was expressed in the methylotrophic yeast Pichia pastoris. Western blot analysis confirmed the reactivity of the purified rFgCatB protein to serum from F. gigantica-infected goats. The effects of serial concentrations (10, 20, 40, 80, and 160 µg/ml) of rFgCatB on various functions of goat peripheral blood mononuclear cells (PBMCs) were examined. We demonstrated that rFgCatB protein can specifically bind to the surface of PBMCs. In addition, rFgCatB increased the expression of cytokines (IL-2, IL-4, IL-10, IL-17, TGF-ß, and IFN-γ), and increased nitric oxide production and cell apoptosis, but reduced cell viability. These data show that rFgCatB can influence cellular and immunological functions of goat PBMCs. Further characterization of the posttranslational modification and assessment of rFgCatB in immunogenicity studies is warranted.


Subject(s)
Cathepsin B/immunology , Fascioliasis/immunology , Helminth Proteins/immunology , Leukocytes, Mononuclear/immunology , Animals , Goats , Recombinant Proteins/immunology
15.
Parasit Vectors ; 12(1): 373, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31358041

ABSTRACT

BACKGROUND: The protozoan parasite Toxoplasma gondii infects and alters the neurotransmission in cerebral cortex and other brain regions, leading to neurobehavioral and neuropathologic changes in humans and animals. However, the molecules that contribute to these changes remain largely unknown. METHODS: We have investigated the impact of T. gondii infection on the overall metabolism of mouse cerebral cortex. Mass-spectrometry-based metabolomics and multivariate statistical analysis were employed to discover metabolomic signatures that discriminate between cerebral cortex of T. gondii-infected and uninfected control mice. RESULTS: Our results identified 73, 67 and 276 differentially abundant metabolites, which were involved in 25, 37 and 64 pathways at 7, 14 and 21 days post-infection (dpi), respectively. Metabolites in the unsaturated fatty acid biosynthesis pathway were upregulated as the infection progressed, indicating that T. gondii induces the biosynthesis of unsaturated fatty acids to promote its own growth and survival. Some of the downregulated metabolites were related to pathways, such as steroid hormone biosynthesis and arachidonic acid metabolism. Nine metabolites were identified as T. gondii responsive metabolites, namely galactosylsphingosine, arachidonic acid, LysoSM(d18:1), L-palmitoylcarnitine, calcitetrol, 27-Deoxy-5b-cyprinol, L-homophenylalanine, oleic acid and ceramide (d18:1/16:0). CONCLUSIONS: Our data provide novel insight into the dysregulation of the metabolism of the mouse cerebral cortex during T. gondii infection and have important implications for studies of T. gondii pathogenesis.


Subject(s)
Cerebral Cortex/metabolism , Cerebral Cortex/parasitology , Host-Parasite Interactions , Toxoplasmosis, Animal/pathology , Toxoplasmosis, Cerebral/pathology , Animals , Brain/pathology , Down-Regulation , Female , Mass Spectrometry , Metabolic Networks and Pathways , Metabolomics , Mice , Mice, Inbred BALB C , Multivariate Analysis , Toxoplasma , Up-Regulation
16.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1314-1320, 2019 Apr.
Article in Chinese | MEDLINE | ID: mdl-31090286

ABSTRACT

Salvia miltiorrhiza is one of the commonly used bulk medicinal materials, which has significant effect on cardiovascular disease, and are heavy demanded in Asia, Europe, North America, Russia and Africa. Consequently, increasing the yield and quality of S. miltiorrhiza has become a major concern worldwide. With the current wild resources of S. miltiorrhiza gradually decreasing, cultivated products occupy most of the markets. However, the cultivation area is widely distributed and the cultivation techniques is different, which lead to the quality and yield of S. miltiorrhiza in consistent. This paper combined visiting survey with document analysis to carry out the cultivation situation of S. miltiorrhiza in main cultivation areas of Shandong, Henan, Sichuan, Shanxi and Hebei provinces. There exist big differences of the ecological environment, mode of cultivation, fertilization, pest control, harvesting processing among the producing areas. We should carry on the ecological suitability zoning analysis and suitable cultivation of each area study to form a pattern of high quality and high yield for the sustainable development of S. miltiorrhiza cultivation.


Subject(s)
Agriculture/methods , Salvia miltiorrhiza/growth & development , Europe , Plants, Medicinal/growth & development
17.
Acta Trop ; 192: 87-90, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30738024

ABSTRACT

Hepatitis E virus (HEV) and influenza A virus (IAV) are two important pathogens which can infect humans and various animals causing public health problems. In this study, the seroprevalence and risk factors associated with HEV and IAV infection in farmed wild boars were investigated in China. A total of 758 serum samples were collected from farmed wild boars between 2015 and 2016, and antibodies against HEV and IAV were examined by enzyme-linked immunosorbent assay (ELISA) using commercially available kits. The overall prevalence of anti-HEV antibodies was 24.54% (186/758, 95% CI 21.48-27.60) in farmed wild boars. There were statistically significant differences in the HEV seroprevalence in farmed wild boars of different ages (<22 days: 8.33%; 22-66 days: 18.89%; >66 days: 26.36%) (P < 0.05) and different genders (50.00% in male and 23.49% in female) (P < 0.01). However, there was no statistically significant difference in the HEV seroprevalence in farmed wild boars of different regions and different years. The overall IAV seroprevalence was 5.80% (44/758, 95% CI 4.14-7.46), and there was no statistically significant difference in the IAV seroprevalence in farmed wild boars of different ages and genders, collected from different regions and different years. Our results indicate that HEV and IAV infections in farmed wild boars may pose a potential risk for human infection. To our knowledge, this is the first report of HEV and IAV seroprevalence in farmed wild boars in China, which provides baseline data for further studies and for control of HEV and IAV infection in farmed wild boars.


Subject(s)
Animals, Domestic/virology , Hepatitis Antibodies/blood , Hepatitis E virus/immunology , Hepatitis E virus/isolation & purification , Hepatitis E/immunology , Influenza A virus/isolation & purification , Sus scrofa/virology , Animals , China , Female , Hepatitis E/epidemiology , Humans , Influenza, Human/epidemiology , Male , Prevalence , Seroepidemiologic Studies , Swine/virology
18.
Acta Trop ; 190: 80-82, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30408461

ABSTRACT

Neospora caninum is an intracellular protozoan parasite with a worldwide distribution, which can cause abortion and stillbirth in ruminants. However, little is known of N. caninum infection in raccoon dogs in China. Thus, a total of 1181 serum samples of farmed raccoon dogs were collected from the major production areas of Jilin, Changchun in Jilin province, and Rizhao, Weihai and Yantai in Shandong province in China. The antibodies to N. caninum were examined by a competitive-inhibition enzyme-linked immunoassay (cELISA). While the N. caninum seroprevalence in farmed raccoon dogs from different regions (cities) were not statistically significant, farmed raccoon dogs in Shandong province had a significantly higher N. caninum seroprevalence (8.99%, 95% CI 7.13-10.85) than those in Jilin province (4.46%, 95% CI 1.99-6.93) (P < 0.05). N. caninum seroprevalence in male and female raccoon dogs were 7.91% (95% CI 5.99-9.83) and 8.06% (95% CI 5.46-10.66), respectively. In addition, the seroprevalence of N. caninum infection in infancy, youth and adult raccoon dogs was 7.32% (95% CI 4.31-10.33), 7.93% (95% CI 5.44-10.42) and 8.41% (95% CI 5.82-11.00), respectively. This is the first report of N. caninum seroprevalence in farmed raccoon dogs in China, which provided baseline data for the prevention of N. caninum infection in raccoon dogs in China.


Subject(s)
Antibodies, Protozoan/blood , Neospora/immunology , Raccoon Dogs/parasitology , Animals , China , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Male , Neospora/isolation & purification , Seroepidemiologic Studies
19.
Parasitol Res ; 118(2): 453-460, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30565193

ABSTRACT

Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is an important zoonotic disease in the world. It affects livestock, especially for sheep and cattle, causing major economic loss due to morbidity and mortality. Although the excretory and secretory products (ESPs) of F. hepatica have been relatively well studied, little is known about the interaction between the ESP and host, and the mechanism of the key proteins involved in interaction. In this study, buffaloes were infected by Fasciola gigantica, and infection serum was collected at three different periods (42dpi, 70dpi, and 98dpi). The interaction proteins were pulled down with three different period serum by Co-IP assay, respectively, and then identified by LC-MS/MS analysis. A number of proteins were identified; some of them related to the biological function of the parasite, while most of them the functions were unknown. For the annotated proteins, 13, 5, and 7 proteins were pulled down by the infected serum in 42dpi, 70dpi, and 98dpi, respectively, and 18 proteins could be detected in all three periods. Among them, 13 belong to the cathepsin family, 4 proteins related to glutathione S-transferase, and 3 proteins are calcium-binding protein; other proteins related to catalytic activity and cellular process. This study could provide new insights into the central role played by ESPs in the protection of F. gigantica from the host immune response. At the same time, our research provided material for further studies about the interaction between F. gigantica and host.


Subject(s)
Buffaloes/blood , Chromatography, Liquid , Fasciola/metabolism , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Tandem Mass Spectrometry , Animals , Buffaloes/parasitology , Fasciola/chemistry , Fasciola/immunology , Fasciola hepatica/immunology , Fascioliasis/immunology , Fascioliasis/parasitology , Helminth Proteins/isolation & purification , Host-Parasite Interactions , Proteomics
20.
Front Microbiol ; 9: 2965, 2018.
Article in English | MEDLINE | ID: mdl-30564214

ABSTRACT

Toxoplasma gondii is a ubiquitous intracellular apicomplexan parasite that can cause zoonotic toxoplasmosis. Effective vaccines against T. gondii infection are necessary to prevent and control the spread of toxoplasmosis. The present study analyzed the B-linear epitopes of T. gondii DOC2 (TgDOC2) protein and then cloned the C-terminus of the TgDOC2 gene (TgDOC2C) to construct the pVAX-TgDOC2C eukaryotic vector. After intramuscular injection of pVAX-TgDOC2C, immune responses were monitored. Two weeks after the last immunization, the protective effects of pVAX-TgDOC2C against acute and chronic toxoplasmosis were evaluated by challenges with T. gondii RH tachyzoites (genotype I) and PRU cysts (genotype II). The DNA vaccine elicited strong humoral and cellular immune responses with high levels of IgG antibody, IL-2 and IFN-γ production compared to those of the controls. The percentage of CD4+ and CD8+ T cells in mice immunized with pVAX-TgDOC2C was significantly increased compared to that of mice injected with empty pVAX I or PBS. After acute infection with 103 lethal tachyzoites, mice immunized with pVAX-TgDOC2C survived longer (12.5 days) than mice treated with pVAX I (8 days) and PBS (7.5 days). Mice immunized with pVAX-TgDOC2C had significantly less brain cysts (1600.83 ± 284.61) compared to mice immunized with pVAX I (3016.67 ± 153.84) or PBS (3100 ± 246.98). Together, these results demonstrated that TgDOC2C confers protective immunity against T. gondii infection and may be a promising candidate antigen for further development of an effective multicomponent vaccine for veterinary use against toxoplasmosis in livestock animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...