Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Technol Health Care ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38759058

ABSTRACT

BACKGROUND: Plane-wave imaging is widely employed in medical imaging due to its ultra-fast imaging speed. However, the image quality is compromised. Existing techniques to enhance image quality tend to sacrifice the imaging frame rate. OBJECTIVE: The study aims to reconstruct high-quality plane-wave images while maintaining the imaging frame rate. METHODS: The proposed method utilizes a U-Net-based generator incorporating a multi-scale convolution module in the encoder to extract information at different levels. Additionally, a Dynamic Criss-Cross Attention (DCCA) mechanism is proposed in the decoder of the U-Net-based generator to extract both local and global features of plane-wave images while avoiding interference caused by irrelevant regions. RESULTS: In the reconstruction of point targets, the experimental images achieved a reduction in Full Width at Half Maximum (FWHM) of 0.0499 mm, compared to the Coherent Plane-Wave Compounding (CPWC) method using 75-beam plane waves. For the reconstruction of cyst targets, the simulated image achieved a 3.78% improvement in Contrast Ratio (CR) compared to CPWC. CONCLUSIONS: The proposed model effectively addresses the issue of unclear lesion sites in plane-wave images.

2.
Cell Signal ; 120: 111227, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38744388

ABSTRACT

PURPOSE: Pcancreatic cancer (PC) is a common tumor of the digestive tract with an insidious onset and high malignancy potential. Currently, surgery is the only effective treatment modality. Therefore, it is crucial to discover new targeted therapeutic modalities. We studied whether transgelin 2 (TAGLN2) targeted control of actin-related protein 2/3 complex subunit 5 (ARPC5)-mediated activation of the MEK/ERK signaling pathway to Influences the proliferation, invasion, and metastasis of pancreatic cancer cells. METHODS: The effects of TAGLN2 overexpression and knockdown on the proliferative viability and invasive metastatic ability of pancreatic cancer cells were verified through in vitro and in vivo assays via constructing a stable lentiviral transfection of human pancreatic cancer cell lines PANC-1 and SW1990. Bioinformatics analysis was used to predict the relationship between TAGLN2 and ARPC5. These findings were subsequently verified through protein profiling, immunofluorescence (IF), and coimmunoprecipitation (CO-IP) assays. In vitro experiments were also conducted to confirm the effect of TAGLN2 modulation on ARPC5 expression, which subsequently affects the proliferation and invasive metastatic ability of pancreatic cancer cells. The study analyzed the relationship between TAGLN2 and the MEK/ERK signaling pathway through bioinformatics and in vitro experiments with the MEK signaling pathway inhibitor U0126. RESULTS: TAGLN2 is expressed at high levels in pancreatic cancer cell lines, and its expression is positively correlated with poor prognosis of pancreatic cancer. ARPC5 is a direct target of TAGLN2 and is associated with the MEK/ERK signaling pathway. In vivo and ex vivo experiments confirmed that overexpression of TAGLN2 promoted the proliferation, invasion, and metastasis of pancreatic cancer cells, and silencing ARPC5 reversed these effect. CONCLUSION: Our research revealed that TAGLN2 protein binds to ARPC5 protein and contributes to increased ARPC5 expression and activation of the MEK/ERK signaling pathway. This activation promotes pancreatic cancer cell growth, infiltration, and spread. Hence, TAGLN2 is a potential viable therapeutic target in pancreatic cancer and represents a novel therapeutic approach.

3.
BMC Anesthesiol ; 24(1): 130, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580909

ABSTRACT

BACKGROUND: Skin mottling is a common manifestation of peripheral tissue hypoperfusion, and its severity can be described using the skin mottling score (SMS). This study aims to evaluate the value of the SMS in detecting peripheral tissue hypoperfusion in critically ill patients following cardiac surgery. METHODS: Critically ill patients following cardiac surgery with risk factors for tissue hypoperfusion were enrolled (n = 373). Among these overall patients, we further defined a hypotension population (n = 178) and a shock population (n = 51). Hemodynamic and perfusion parameters were recorded. The primary outcome was peripheral hypoperfusion, defined as significant prolonged capillary refill time (CRT, > 3.0 s). The characteristics and hospital mortality of patients with and without skin mottling were compared. The area under receiver operating characteristic curves (AUROC) were used to assess the accuracy of SMS in detecting peripheral hypoperfusion. Besides, the relationships between SMS and conventional hemodynamic and perfusion parameters were investigated, and the factors most associated with the presence of skin mottling were identified. RESULTS: Of the 373-case overall population, 13 (3.5%) patients exhibited skin mottling, with SMS ranging from 1 to 5 (5, 1, 2, 2, and 3 cases, respectively). Patients with mottling had lower mean arterial pressure, higher vasopressor dose, less urine output (UO), higher CRT, lactate levels and hospital mortality (84.6% vs. 12.2%, p < 0.001). The occurrences of skin mottling were higher in hypotension population and shock population, reaching 5.6% and 15.7%, respectively. The AUROC for SMS to identify peripheral hypoperfusion was 0.64, 0.68, and 0.81 in the overall, hypotension, and shock populations, respectively. The optimal SMS threshold was 1, which corresponded to specificities of 98, 97 and 91 and sensitivities of 29, 38 and 67 in the three populations (overall, hypotension and shock). The correlation of UO, lactate, CRT and vasopressor dose with SMS was significant, among them, UO and CRT were identified as two major factors associated with the presence of skin mottling. CONCLUSION: In critically ill patients following cardiac surgery, SMS is a very specific yet less sensitive parameter for detecting peripheral tissue hypoperfusion.


Subject(s)
Cardiac Surgical Procedures , Hypotension , Shock, Septic , Humans , Critical Illness , Cardiac Surgical Procedures/adverse effects , Hypotension/diagnosis , Hypotension/complications , Lactates
4.
Article in English | MEDLINE | ID: mdl-38442059

ABSTRACT

Owing to the superior performances, exemplar-based methods with knowledge distillation (KD) are widely applied in class incremental learning (CIL). However, it suffers from two drawbacks: 1) data imbalance between the old/learned and new classes causes the bias of the new classifier toward the head/new classes and 2) deep neural networks (DNNs) suffer from distribution drift when learning sequence tasks, which results in narrowed feature space and deficient representation of old tasks. For the first problem, we analyze the insufficiency of softmax loss when dealing with the problem of data imbalance in theory and then propose the imbalance softmax (im-softmax) loss to relieve the imbalanced data learning, where we re-scale the output logits to underfit the head/new classes. For another problem, we calibrate the feature space by incremental-adaptive angular margin (IAAM) loss. The new classes form a complete distribution in feature space yet the old are squeezed. To recover the old feature space, we first compute the included angle of normalized features and normalized anchor prototypes, and use the angle distribution to represent the class distribution, then we replenish the old distribution with the deviation from the new. Each anchor prototype is predefined as a learnable vector for a designated class. The proposed im-softmax reduces the bias in the linear classification layer. IAAM rectifies the representation learning, reduces the intra-class distance, and enlarges the inter-class margin. Finally, we seamlessly combine the im-softmax and IAAM in an end-to-end training framework, called the dual balanced class incremental learning (DBL), for further improvements. Experiments demonstrate the proposed method achieves state-of-the-art (SOTA) performances on several benchmarks, such as CIFAR10, CIFAR100, Tiny-ImageNet, and ImageNet-100.

5.
J Exp Clin Cancer Res ; 43(1): 91, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528516

ABSTRACT

BACKGROUND: Pancreatic cancer (PC) is a highly malignant gastrointestinal tumor, which is characterized by difficulties in early diagnosis, early metastasis, limited therapeutic response and a grim prognosis. Therefore, it is imperative to explore potential therapeutic targets for PC. Currently, although the involvement of the Pellino E3 Ubiquitin Protein Ligase 1 (PELI1) in the human growth of some malignant tumors has been demonstrated, its association with PC remains uncertain. METHODS: Bioinformatics, qRT-PCR, Western blot and IHC were used to detect the expression of PELI1 in pancreas or PC tissues and cells at mRNA and protein levels. The effects of PELI1 on the proliferation and metastatic ability of pancreatic cancer in vitro and in vivo were investigated using CCK8, cloning formation, EdU, flow cytometry, IHC, Transwell assay, wound healing, nude mice subcutaneous tumorigenesis and intrasplenic injection to construct a liver metastasis model. The interactions of PELI1 with proteins as well as the main functions and pathways were investigated by protein profiling, Co-IP, GST-pull down, Immunofluorescence techniques, immunohistochemical co-localization and enrichment analysis. The rescue experiment verified the above experimental results. RESULTS: The mRNA and protein expression levels of PELI1 in PC tissues were upregulated and were associated with poor prognosis of patients, in vitro and in vivo experiments confirmed that PELI1 can affect the proliferation and metastatic ability of PC cells. Co-IP, GST-pull down, and other experiments found that PELI1 interacted with Ribosomal Protein S3 (RPS3) through the FHA structural domain and promoted the polyubiquitination of RPS3 in the K48 chain, thereby activates the PI3K/Akt/GSK3ß signaling pathway. Moreover, ubiquitinated degradation of RPS3 further reduces Tumor Protein P53 (p53) protein stability and increases p53 degradation by MDM2 Proto-Oncogene (MDM2). CONCLUSION: PELI1 is overexpressed in PC, which increased ubiquitination of RPS3 proteins and activates the PI3K/Akt/GSK3ß signaling pathway, as well as reduces the protective effect of RPS3 on p53 and promotes the degradation of the p53 protein, which facilitates the progression of PC and leads to a poor prognosis for patients. Therefore, PELI1 is a potential target for the treatment of PC.


Subject(s)
Pancreatic Neoplasms , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Glycogen Synthase Kinase 3 beta/metabolism , Mice, Nude , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
BMC Nurs ; 23(1): 46, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233880

ABSTRACT

BACKGROUND: In public health emergencies, nurses are vulnerable to adverse reactions, especially job burnout. It is critical to identify nurses at risk of burnout early and implement interventions as early as possible. METHODS: A cross-sectional survey of the hospitals in Xiangyang City was conducted in January, 2023 using stratified cluster sampling. Anonymized data were collected from 1584 working nurses. The Impact of Events Scale-Revised (IES-R) and the Chinese version of the Maslach Burnout Inventory-General Survey (MBI-GS) were used to evaluate the post-traumatic stress disorder (PTSD) and burnout of nurses in public health emergencies. Logistic regression analysis was established to screen for risk factors of burnout, and a nomogram was developed to predict the risk of burnout. A calibration curve and the area under the receiver operating characteristic (ROC) curve were used to validate the nomogram internally. RESULTS: This study showed that only 3.7% of nurses were completely free of PTSD during a public health emergency. We found that PTSD varied by age, marital status, procreation status, length of service, employee status, and whether working in the ICU. The nurses aged 30 ~ 40 years old, single, married without children, non-regular employees, worked for less than three years or worked in the ICU had higher levels of PTSD. Regarding the prevalence of burnout, 27.4%, 48.5%, and 18.6% of nurses had a high level of emotional exhaustion (EE), depersonalization (DP), and diminished personal accomplishment (PA), respectively. There, 31.1% of nurses had more than two types of job burnout. The number of night shifts, the type of hospital, marital status, and the severity of PTSD were all associated with higher rates of exhaustion among nurses. As a graphical representation of the model, a nomogram was created and demonstrated excellent calibration and discrimination in both sets (AUC = 0.787). CONCLUSIONS: This study confirmed the PTSD and burnout are common problems for in-service nurses during public health emergencies and screened out the high-risk groups of job burnout. It is necessary to pay more attention nurses who are single and working in general hospitals with many night shifts, especially nurses with severe PTSD. Hospitals can set up nurses' personal health records to give timely warnings to nurses with health problems, and carry out support interventions to relieve occupational stress.

7.
Ann Thorac Surg ; 117(2): 432-438, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37488003

ABSTRACT

BACKGROUND: As patients with acute kidney injury (AKI) progress to a higher stage, the risk for poor outcomes dramatically rises. Early identification of patients at high risk for AKI progression remains a major challenge. This study aimed to evaluate the value of furosemide responsiveness (FR) for predicting AKI progression in patients with initial mild and moderate AKI after cardiac surgery. METHODS: We performed 2 separate exploratory analyses. The Zhongshan cohort was a single-center, prospective, observational cohort, whereas the Beth Israel Deaconess Medical Center cohort was a single-center, retrospective cohort. We calculated 2 FR parameters for each patient, namely the FR index and modified FR index, defined as 2-hour urine output divided by furosemide dose (FR index, mL/mg/2 h) and by furosemide dose and body weight (modified FR index, mL/[mg·kg]/2 h), respectively. The primary outcome was AKI progression within 7 days. RESULTS: AKI progression occurred in 80 (16.0%) and 359 (11.3%) patients in the Zhongshan and Beth Israel Deaconess Medical Center cohorts, respectively. All FR parameters (considered continuously or in quartiles) were inversely associated with risk of AKI progression in both cohorts (all adjusted P < .01). The addition of FR parameters significantly improved prediction for AKI progression based on baseline clinical models involving C-index, net reclassification improvement, and integrated discrimination improvement index in both cohorts (all P < .01). CONCLUSIONS: FR parameters were inversely associated with risk of AKI progression in patients with mild and moderate AKI after cardiac surgery. The addition of FR parameters significantly improved prediction for AKI progression based on baseline clinical models.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Humans , Furosemide , Retrospective Studies , Prospective Studies , Cardiac Surgical Procedures/adverse effects , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Postoperative Complications/etiology
8.
Biochem Pharmacol ; 217: 115849, 2023 11.
Article in English | MEDLINE | ID: mdl-37806457

ABSTRACT

Cancer stem cells (CSCs) have been proposed to explain tumor relapse and chemoresistance in various types of cancers, and androgen receptor (AR) has been emerged as a potential regulator of stemness in cancers. However, the underlying mechanism of AR-regulated CSCs properties and chemoresistance in gastric cancer (GC) remains unknown. Here, we shown that AR is upregulated in GC tissues and correlates with poor survival rate and CSCs phenotypes of GC patients. According to our experimental data, overexpression of AR upregulated the expression of CSCs markers and this was consistent with the result concluded from data analysis that the expression of AR was positively correlated with CD44 in GC patients. In addition, AR overexpression obviously enhanced the tumor sphere formation ability and chemoresistance of GC cells in vitro. Whereas these effects were attenuated by inhibition of AR. These results were further validated in vivo that MGC-803 cells overexpressing AR had stronger properties to initiate gastric tumorigenesis than the control cells, and inhibition of AR increased the chemosensitivity of GC cells. Mechanically, AR upregulated CD44 expression by directly binding to its promoter region and Yes-associated protein 1 (YAP1) served as the co-factor of AR, which was demonstrated by the fact that the promoting effects of AR on GC cells stemness were partially counteracted by YAP1 knockdown. Thus, this study revealed that AR facilitates CSCs properties and chemoresistance of GC cells via forming complex with YAP1and indicates a potential therapeutic approach to GC patients.


Subject(s)
Receptors, Androgen , Stomach Neoplasms , YAP-Signaling Proteins , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
9.
Adv Sci (Weinh) ; 10(34): e2303091, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863665

ABSTRACT

Erlotinib, an EGFR tyrosine kinase inhibitor, is used for treating patients with cancer exhibiting EGFR overexpression or mutation. However, the response rate of erlotinib is low among patients with gastric cancer (GC). The findings of this study illustrated that the overexpression of bromodomain PHD finger transcription factor (BPTF) is partially responsible for erlotinib resistance in GC, and the combination of the BPTF inhibitor AU-1 with erlotinib synergistically inhibited tumor growth both in vivo and in vitro. AU-1 inhibited the epigenetic function of BPTF and decreased the transcriptional activity of c-MYC on PLCG1 by attenuating chromosome accessibility of the PLCG1 promoter region, thus decreasing the expression of p-PLCG1 and p-Erk and eventually improving the sensitivity of GC cells to erlotinib. In patient-derived xenograft (PDX) models, AU-1 monotherapy exhibited remarkable tumor-inhibiting activity and is synergistic anti-tumor effects when combined with erlotinib. Altogether, the findings illustrate that BPTF affects the responsiveness of GC to erlotinib by epigenetically regulating the c-MYC/PLCG1/pErk axis, and the combination of BPTF inhibitors and erlotinib is a viable therapeutic approach for GC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Stomach Neoplasms , Humans , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , ErbB Receptors/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Phospholipase C gamma/pharmacology
10.
Redox Biol ; 67: 102923, 2023 11.
Article in English | MEDLINE | ID: mdl-37832398

ABSTRACT

As the predominant immunosuppressive component within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) inhibit Natural Killer cell (NK cell) activity to promote tumor progression and immune escape; however, the mechanisms of cross-talk between CAFs and NK cells in gastric cancer (GC) remain poorly understood. In this study, we demonstrate that NK cell levels are inversely correlated with CAFs abundance in human GC. CAFs impair the anti-tumor capacity of NK cells by inducing ferroptosis, a cell death process characterized by the accumulation of iron-dependent lipid peroxides. CAFs induce ferroptosis in NK cells by promoting iron overload; conversely, decreased intracellular iron levels protect NK cells against CAF-induced ferroptosis. Mechanistically, CAFs increase the labile iron pool within NK cells via iron export into the TME, which is mediated by the upregulated expression of iron regulatory genes ferroportin1 and hephaestin in CAFs. Moreover, CAF-derived follistatin like protein 1(FSTL1) upregulates NCOA4 expression in NK cells via the DIP2A-P38 pathway, and NCOA4-mediated ferritinophagy is required for CAF-induced NK cell ferroptosis. In a human patient-derived organoid model, functional targeting of CAFs using a combination of deferoxamine and FSTL1-neutralizing antibody significantly alleviate CAF-induced NK cell ferroptosis and boost the cytotoxicity of NK cells against GC. This study demonstrates a novel mechanism of suppression of NK cell activity by CAFs in the TME and presents a potential therapeutic approach to augment the immune response against GC mediated by NK cells.


Subject(s)
Antineoplastic Agents , Cancer-Associated Fibroblasts , Ferroptosis , Follistatin-Related Proteins , Stomach Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Follistatin-Related Proteins/metabolism , Stomach Neoplasms/metabolism , Iron/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Antineoplastic Agents/pharmacology , Tumor Microenvironment
12.
Comput Biol Med ; 164: 107316, 2023 09.
Article in English | MEDLINE | ID: mdl-37595521

ABSTRACT

Plane-wave ultrasound imaging technology offers high-speed imaging but lacks image quality. To improve the image spatial resolution, beam synthesis methods are used, which often compromise the temporal resolution. Herein, we propose ARU-GAN, a super-resolution reconstruction model based on residual connectivity and attention mechanisms, to address this issue. ARU-GAN comprises a Full-scale Skip-connection U-shaped Generator (FSUG) with an attention mechanism and a Residual Attention Patch Discriminator (RAPD). The former captures global and local features of the image by using full-scale skip-connections and attention mechanisms. The latter focuses on changes in the image at different scales to enhance its discriminative ability at the patch level. ARU-GAN was trained using a combined loss function on the Plane-Wave Imaging Challenge in Medical Ultrasound (PICMUS) 2016 dataset, which includes three types of targets: point targets, cyst targets, and in-vivo targets. Compared to Coherent Plane-Wave Compounding (CPWC), ARU-GAN achieved a reduction in Full Width at Half Maximum (FWHM) by 5.78%-20.30% on point targets, improved Contrast (CR) by 7.59-11.29 percentage points, and Contrast to Noise Ratio (CNR) by 30.58%-45.22% on cyst targets. On in-vivo target, ARU-GAN improved the Peak Signal-to-Noise Ratio (PSNR) by 11.94%, the Complex-Wavelet Structural Similarity Index Measurement (CW-SSIM) by 17.11%, and the Normalized Cross Correlation (NCC) by at least 2.17% compared to existing deep learning methods. In conclusion, ARU-GAN is a promising model for the super-resolution reconstruction of plane-wave medical ultrasound images. It provides a novel solution for improving image quality, which is essential for clinical practice.


Subject(s)
Cysts , Humans , Random Amplified Polymorphic DNA Technique , Signal-To-Noise Ratio
13.
Oncol Lett ; 26(1): 285, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37274465

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a common digestive cancer, and its prognosis is poor. Myosin 1E (MYO1E) is a class I myosin family member whose expression and function have not been reported in PAAD. In the present study, bioinformatics analysis was used to explore the expression levels of MYO1E in PAAD and its prognostic value, and the immunological role of MYO1E in PAAD was analyzed. The study revealed that a variety of malignancies have substantially increased MYO1E expression. Further investigation demonstrated that PAAD tissues exhibited greater levels of MYO1E mRNA and protein expression than normal tissues. High MYO1E expression is associated with poor prognosis in patients with PAAD. MYO1E expression was also associated with pathological stage in patients with PAAD. Functional enrichment analysis demonstrated that MYO1E was linked to multiple tumor-related mechanisms in PAAD. The pancreatic adenocarcinoma tumor microenvironment (TME) was analyzed and it was revealed that MYO1E expression was positively associated with tumor immune cell infiltration. In addition, MYO1E was closely associated with some tumor chemokines/receptors and immune checkpoints. In vitro experiments revealed that the suppression of MYO1E expression could inhibit pancreatic adenocarcinoma cell proliferation, invasion and migration. Through preliminary analysis, the present study evaluated the potential function of MYO1E in PAAD and its function in TME, and MYO1E may become a potential biomarker for PAAD.

14.
Aging (Albany NY) ; 15(12): 5381-5398, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37348029

ABSTRACT

The E3 ligase F-box only protein 28 (FBXO28) belongs to the F-box family of proteins that play a critical role in tumor development. However, the potential function of FBXO28 in pancreatic cancer (PC) and its molecular mechanism remain unclear. In this study, we examined FBXO28 expression in PC and its biological role and explored the mechanism of FBXO28-mediated proliferation, invasion, and metastasis of PC cells. Compared with paracancerous tissues and human normal pancreatic ductal epithelial cells, FBXO28 was highly expressed in PC tissues and cell lines. High expression of FBXO28 was negatively correlated with the survival prognosis of patients with PC. Functional assays indicated that FBXO28 promoted PC cell proliferation, invasion, and metastasis in vitro and in vivo. Furthermore, immunoprecipitation-mass spectrometry was used to identify SMARCC2 as the target of FBXO28; upregulation of SMARCC2 can reverse the effect of overexpression of FBXO28 on promoting the proliferation, invasion, and metastasis of PC cells. Mechanistically, FBXO28 inhibited SMARCC2 expression in post-translation by increasing SMARCC2 ubiquitination and protein degradation. In conclusion, FBXO28 has a potential role in PC, possibly promoting PC progression through SMARCC2 ubiquitination. Thus, FBXO28 might be a potential treatment target in PC.


Subject(s)
Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Cell Line , Ubiquitination , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Pancreatic Neoplasms
15.
BMC Anesthesiol ; 23(1): 164, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37189085

ABSTRACT

BACKGROUND: Patients receiving surgical treatment of acute type A Aortic Dissection (aTAAD) are common to suffer organ dysfunction in the intensive care unit due to overwhelming inflammation. Previous studies have revealed that glucocorticoids may reduce complications in certain patient groups, but evidence between postoperative glucocorticoids administration and improvement in organ dysfunction after aTAAD surgery are lacking. METHODS: This study will be an investigator-initiated, prospective, single-blind, randomized, single-center study. Subjects with confirmed diagnosis of aTAAD undergoing surgical treatment will be enrolled and 1:1 randomly assigned to receive either glucocorticoids or normal treatment. All patients in the glucocorticoids group will be given methylprednisolone intravenously for 3 days after enrollment. The primary endpoint will be the amplitude of variation of Sequential Organ Failure Assessment score on post-operative day 4 compared to baseline. DISCUSSION: The trial will explore the rationale for postoperative application of glucocorticoids in patients after aTAAD surgery. TRIAL REGISTRATION: This study has been registered on ClinicalTrials.gov (NCT04734418).


Subject(s)
Aortic Dissection , Glucocorticoids , Humans , Glucocorticoids/therapeutic use , Prospective Studies , Multiple Organ Failure , Single-Blind Method , Aortic Dissection/surgery , Treatment Outcome , Randomized Controlled Trials as Topic
16.
Front Oncol ; 13: 1169833, 2023.
Article in English | MEDLINE | ID: mdl-37207150

ABSTRACT

The pathogenic mechanisms of pancreatic cancer (PC) are still not fully understood. Ubiquitination modifications have a crucial role in tumorigenesis and progression. Yet, the role of MINDY2, a member of the motif interacting with Ub-containing novel DUB family (MINDY), as a newly identified deubiquitinating enzyme, in PC is still unclear. In this study, we found that MINDY2 expression is elevated in PC tissue (clinical samples) and was associated with poor prognosis. We also found that MINDY2 is associated with pro-carcinogenic factors such as epithelial-mesenchymal transition (EMT), inflammatory response, and angiogenesis; the ROC curve suggested that MINDY2 has a high diagnostic value in PC. Immunological correlation analysis suggested that MINDY2 is deeply involved in immune cell infiltration in PC and is associated with immune checkpoint-related genes. In vivo and in vitro experiments further suggested that elevated MINDY2 promotes PC proliferation, invasive metastasis, and EMT. Meanwhile, actinin alpha 4 (ACTN4) was identified as a MINDY2-interacting protein by mass spectrometry and other experiments, and ACTN4 protein levels were significantly correlated with MINDY2 expression. The ubiquitination assay confirmed that MINDY2 stabilizes the ACTN4 protein level by deubiquitination. The pro-oncogenic effect of MINDY2 was significantly inhibited by silencing ACTN4. Bioinformatics Analysis and Western blot experiments further confirmed that MINDY2 stabilizes ACTN4 through deubiquitination and thus activates the PI3K/AKT/mTOR signaling pathway. In conclusion, we identified the oncogenic role and mechanism of MINDY2 in PC, suggesting that MINDY2 is a viable candidate gene for PC and may be a therapeutic target and critical prognostic indicator.

17.
Cell Mol Biol Lett ; 28(1): 24, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959535

ABSTRACT

BACKGROUND: Sepsis is an abnormal immune response after infection, wherein the lung is the most susceptible organ to fail, leading to acute lung injury. To overcome the limitations of current therapeutic strategies and develop more specific treatment, the inflammatory process, in which T cell-derived extracellular vesicles (EVs) play a central role, should be explored deeply. METHODS: Liquid chromatography-tandem mass spectrometry was performed for serum EV protein profiling. The serum diacylglycerol kinase kappa (DGKK) and endotoxin contents of patients with sepsis-induced lung injury were measured. Apoptosis, oxidative stress, and inflammation in A549 cells, bronchoalveolar lavage fluid, and lung tissues of mice were measured by flow cytometry, biochemical analysis, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and western blot. RESULTS: DGKK, the key regulator of the diacylglycerol (DAG)/protein kinase C (PKC) pathway, exhibited elevated expression in serum EVs of patients with sepsis-induced lung injury and showed strong correlation with sepsis severity and disease progression. DGKK was expressed in CD4+ T cells under regulation of the NF-κB pathway and delivered by EVs to target cells, including alveolar epithelial cells. EVs produced by CD4+ T lymphocytes exerted toxic effects on A549 cells to induce apoptotic cell death, oxidative cell damage, and inflammation. In mice with sepsis induced by cecal ligation and puncture, EVs derived from CD4+ T cells also promoted tissue damage, oxidative stress, and inflammation in the lungs. These toxic effects of T cell-derived EVs were attenuated by the inhibition of PKC and NOX4, the downstream effectors of DGKK and DAG. CONCLUSIONS: This approach established the mechanism that T-cell-derived EVs carrying DGKK triggered alveolar epithelial cell apoptosis, oxidative stress, inflammation, and tissue damage in sepsis-induced lung injury through the DAG/PKC/NOX4 pathway. Thus, T-cell-derived EVs and the elevated distribution of DGKK should be further investigated to develop therapeutic strategies for sepsis-induced lung injury.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Sepsis , Animals , Mice , Acute Lung Injury/etiology , Acute Lung Injury/drug therapy , CD4-Positive T-Lymphocytes , Inflammation , Oxidative Stress , Sepsis/complications , T-Lymphocytes , Diacylglycerol Kinase/metabolism
18.
EBioMedicine ; 89: 104451, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36738481

ABSTRACT

BACKGROUND: Vacuolar protein sorting-associated protein 35 (VPS35) is a core component of the retromer complex which mediates intracellular protein transport. It is well known that dysfunctional VPS35 functions in the accumulation of pathogenic proteins. In our previous study, VPS35 was found to be a potential gene related to poor prognosis in gastric cancer. However, the biological functions of VPS35 in gastric cancer remain unclear. METHODS: Cell viability assays were performed to examine whether VPS35 affected cell proliferation. Immunoprecipitation and biotin assays showed that VPS35 bound to epidermal growth factor receptor (EGFR) in the cytoplasm and recycled it to the cell surface. Patient-derived xenografts and organoids were used to evaluate the effect of VPS35 on the response of gastric cancer to EGFR inhibitors. FINDINGS: VPS35 expression levels were upregulated in tumour tissues and correlated with local tumour invasion and poor survival in patients with gastric cancer. VPS35 promoted cell proliferation and increased tumour growth. Mechanistically, VPS35 selectively bound to endocytosed EGFR in early endosomes and recycled it back to the cell surface, leading to the downstream activation of the ERK1/2 pathway. We also found that high VPS35 expression levels increased the sensitivity of the xenograft and organoid models to EGFR inhibitors. INTERPRETATION: VPS35 promotes cell proliferation by recycling EGFR to the cell surface, amplifying the network of receptor trafficking. VPS35 expression levels are positively correlated with gastric cancer sensitivity to EGFR inhibitors, which offers a potential method to stratify patients for EGFR inhibitor utilisation. FUNDING: National Natural Science Foundation of China.


Subject(s)
Stomach Neoplasms , Vesicular Transport Proteins , Humans , Carrier Proteins/metabolism , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Protein Transport/drug effects , Protein Transport/genetics , Stomach Neoplasms/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
19.
Matrix Biol ; 115: 1-15, 2023 01.
Article in English | MEDLINE | ID: mdl-36423735

ABSTRACT

The mechanical microenvironment regulated by cancer-associated fibroblasts (CAFs) influence tumor progression. Chemotherapeutic interventions including 5-Fluorouracil (5-Fu) are commonly used for primary treatment of patients with advanced gastric cancer (GC), and the development of acquired resistance to 5-Fu limits the clinical efficacy of these chemotherapies. However, if and how the interplay between CAFs and the mechanical microenvironment regulates GC response to 5-Fu is poorly understood. In this study, we demonstrate that high-level expression of calponin 1(CNN1) in gastric CAFs predicts poor clinical outcomes of GC patients, especially for those treated with 5-Fu. CNN1 knockdown in CAFs improves the effectiveness of 5-Fu in reducing tumor growth in a mouse GC model and confers increased sensitivity to 5-Fu in a 3D culture system. Furthermore, CNN1 knockdown impairs CAF contraction and reduces matrix stiffness without affecting the expression of matrix proteins. Mechanistically, CNN1 interacts with PDZ and LIM Domain 7 (PDLIM7) and prevents its degradation by the E3 ubiquitin ligase NEDD4-1, which leads to activation of the ROCK1/MLC pathway. The increased matrix stiffness, in turn, contributes to 5-Fu resistance in GC cells by activating YAP. Taken together, our data reveal a critical role of the mechanical microenvironment in 5-Fu resistance, which is modulated by CNN1hi CAFs-mediated matrix stiffening, indicating that targeting CAFs may provide a novel option for overcoming drug resistance in GC.


Subject(s)
Cancer-Associated Fibroblasts , Stomach Neoplasms , Animals , Mice , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Fluorouracil/pharmacology , Fluorouracil/metabolism , Fluorouracil/therapeutic use , Tumor Microenvironment , Calponins
20.
Transl Oncol ; 27: 101577, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332599

ABSTRACT

BACKGROUND: Adjuvant chemotherapy (ACT) with 5-FU alone or 5-FU plus platinum after curative surgery improves the prognosis of pStage II-III gastric cancer (GC). However, only a subset of patients benefits from adjuvant platinum. To avoid the side effects of platinum, it is significant to accurately screen the patients who would benefit maximally with this treatment. The present study aimed to assess the value of DKK1 in predicting the benefit of adjuvant platinum chemotherapy in patients with pStage II -III GC. METHODS: Platinum sensitivity-related genes were screened by bioinformatics. DKK1 expression in 380 GC specimens was detected by immunohistochemistry (IHC) staining, and the correlation with adjuvant platinum-specific benefits were analyzed. RESULTS: DKK1 was screened as the most significant platinum sensitivity-related gene. In patients with DKK1high GC, the estimated absolute 5-year overall survival (OS) benefits from adjuvant platinum for pStage II-III, II, IIIA, IIIB, and IIIC were 25.5%, 17.3%, 36.4%, 29.2% and 31.1%, respectively, and the estimated absolute 5-year disease-free survival (DFS) benefits in the corresponding stages were 27.4%, 17.5%, 36.7%, 29.7% and 31.5%, respectively. These benefits were significantly higher than those in the same TNM stage without adjusting for DKK1 status. The performance of DKK1 was independent of the TNM stage and other clinicopathological variables. Similar results were obtained in the TCGA and ACRG cohorts. Furthermore, nomograms were constructed to predict the survival benefits in DKK1 subgroups. CONCLUSIONS: The stratification strategy based on DKK1 status is more precise than the TNM staging system for the selection of pStage II-III GC patients suitable for platinum-containing ACT.

SELECTION OF CITATIONS
SEARCH DETAIL
...