Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Bull (Beijing) ; 68(11): 1187-1194, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37179230

ABSTRACT

During the 7-9th century, the Tibetan Empire constituted a superpower between the Tang Empire and Abbasid Caliphate: one that played significant roles in geopolitics in Asia during the Early Medieval Period. The factors which led to the rise and rapid decline of this powerful Empire, the only united historical regime on the Tibetan Plateau (TP), remain unclear. Sub-annual scale precipitation and decadal-scale temperature records of the central TP are presented, indicating that the height of this Empire coincided with a two-century long interval of uncharacteristically warm and humid climate. The ameliorated climate enabled the expansion of arable land and increased agricultural production. The close relationship between the precipitation records and historical events implied that the Empire implemented flexible strategies to tackle the effects of climate changes. This has implications for agricultural production in alpine regions including the TP, in the context of current global warming.


Subject(s)
Climate Change , Global Warming , Tibet , Temperature , Agriculture
2.
Sci Bull (Beijing) ; 67(4): 427-436, 2022 02 26.
Article in English | MEDLINE | ID: mdl-36546094

ABSTRACT

One of the Holocene abrupt events around 4200 years ago, lasting for âˆ¼ 200 years, is thought to have caused cultural disruptions, yet terrestrial climatic status right after the cold/dry event remains poorly defined and is often presumed that a generally cool condition prevailed during the Bronze Age (∼ 4000-2200 years ago). Here we report an alkenone-based summer temperature record over the past âˆ¼ 12,000 years, in addition to two updated alkenone records, from Northwest China, providing new insights into the climatic status right after the event. Our results indicate that exceptional terrestrial warmth, up to âˆ¼ 6 °C, occurred around 4200-2800 years ago during the Bronze Age, superimposed on the long-term Holocene cooling trend. The exceptional warmth in Northwest China, together with other climate anomalies elsewhere, suggests an unusual large-scale climatic reorganization at 4200-2800 years ago when solar activity remained high, with important implications to the climate background for cultural developments during the Bronze Age.


Subject(s)
Cold Temperature , Seasons , China
5.
Mol Biol Evol ; 38(4): 1529-1536, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33283852

ABSTRACT

The rise and expansion of Tibetan Empire in the 7th to 9th centuries AD affected the course of history across East Eurasia, but the genetic impact of Tibetans on surrounding populations remains undefined. We sequenced 60 genomes for four populations from Pakistan and Tajikistan to explore their demographic history. We showed that the genomes of Balti people from Baltistan comprised 22.6-26% Tibetan ancestry. We inferred a single admixture event and dated it to about 39-21 generations ago, a period that postdated the conquest of Baltistan by the ancient Tibetan Empire. The analyses of mitochondrial DNA, Y, and X chromosome data indicated that both ancient Tibetan males and females were involved in the male-biased dispersal. Given the fact that the Balti people adopted Tibetan language and culture in history, our study suggested the impact of Tibetan Empire on Baltistan involved dominant cultural and minor demic diffusion.


Subject(s)
Gene Flow , Genome, Human , Female , Humans , Male , Pakistan , Tibet/ethnology , Whole Genome Sequencing
6.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32310264

ABSTRACT

Geographic patterns of bacteria and microeukaryotes have attracted increasing attention. However, mechanisms underlying geographic patterns in the community composition of both microbial groups are still poorly resolved. In particular, knowledge of whether bacterial communities and microeukaryotic communities are subject to the same or different assembly mechanisms is still limited. In this study, we investigated the biogeographic patterns of bacterial and microeukaryotic communities of 23 lakes on the Tibetan Plateau and quantified the relative influence of assembly mechanisms in shaping both microbial communities. Results showed that water salinity was the major driving force in controlling the community structures of bacteria and microeukaryotes. Although bacterial and microeukaryotic communities exhibited similar distance-decay patterns, the bacterial communities were mainly governed by environmental filtering (a niche-related process), whereas microeukaryotic communities were strongly driven by dispersal limitation (a neutral-related process). Furthermore, we found that bacteria exhibited wider niche breadths and higher dispersal ability but lower community stabilities than microeukaryotes. The similar distribution patterns but contrasting assembly mechanisms effecting bacteria and microeukaryotes resulted from the differences in dispersal ability and community stability. Our results highlight the importance of considering organism types in studies of the assembly mechanisms that shape microbial communities in microbial ecology.


Subject(s)
Lakes , Microbiota , Bacteria/genetics , Biodiversity , Salinity , Tibet
7.
FEMS Microbiol Ecol ; 95(7)2019 07 01.
Article in English | MEDLINE | ID: mdl-31183497

ABSTRACT

The free-living (FL) and particle-attached (PA) bacteria have different dispersal potentials and ecological roles in aquatic ecosystems. However, our knowledge of their diversity and regional biogeographic patterns in high-altitude alpine lakes is limited. In this study, to investigate the diversity and geographic patterns of the FL and PA bacterial communities and to quantify the relative influence of environmental filtering and dispersal limitation in shaping the FL and PA bacterial communities, we collected surface water samples from 26 lakes over 1000 kilometers on the Tibetan Plateau. The majority of sequences exclusively in the FL bacteria were Actinobacteria (29.4%), Proteobacteria (27.7%) and Bacteroidetes (21.6%), while sequences exclusively in the PA bacteria were dominated by Proteobacteria (57.9%). The α-diversity indices, including Shannon index and Pielou's evenness, were significantly lower in the FL bacteria than that in PA bacteria. The surrounding soils as an important potential source contributed more to the diversity of the PA bacteria than the FL bacteria. Both of the FL and PA bacterial communities exhibited a significant regional distance-decay pattern. Environmental filtering and dispersal limitation were significantly related to the spatial variation of the FL and PA bacterial communities, whereas the environmental filtering/dispersal limitation effect ratio was higher in the FL bacterial communities. Our study is the first to describe the regional-scale spatial variability and to identify the factors that drive regional variability of the FL and PA bacterial communities in Tibetan lakes.


Subject(s)
Bacteria , Lakes/microbiology , Microbiota , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Biodiversity , Microbiota/genetics , Phylogeography , RNA, Ribosomal, 16S/genetics , Soil , Tibet , Water Microbiology
8.
Environ Sci Technol ; 53(10): 5641-5651, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30994333

ABSTRACT

Black carbon (BC) is one of the major drivers of climate change, and its measurement in different environment is crucial for the better understanding of long-term trends in the Himalayan-Tibetan Plateau (HTP) as climate warming has intensified in the region. We present the measurement of BC concentration from six lake sediments in the HTP to reconstruct historical BC deposition since the pre-industrial era. Our results show an increasing trend of BC concurrent with increased anthropogenic emission patterns after the commencement of the industrialization era during the 1950s. Also, sedimentation rates and glacier melt strengthening influenced the total input of BC into the lake. Source identification, based on the char and soot composition of BC, suggests biomass-burning emissions as a major contributor to BC, which is further corroborated by open-fire occurrence events in the region. The increasing BC trend continues to recent years, indicating increasing BC emissions, mainly from South Asia.


Subject(s)
Lakes , Soot , Asia , Carbon , Environmental Monitoring , Geologic Sediments , Tibet
9.
Sci Bull (Beijing) ; 64(9): 565-566, 2019 May 15.
Article in English | MEDLINE | ID: mdl-36659621
10.
Ecol Evol ; 8(10): 5069-5078, 2018 May.
Article in English | MEDLINE | ID: mdl-29876082

ABSTRACT

Daphnia on the Tibetan Plateau has been little studied, and information on species diversity and biogeography is lacking. Here, we conducted a 4-year survey using the barcoding fragment of the mitochondrial COI gene to determine the distribution and diversity of Daphnia species found across the Plateau. Our results show that species richness is higher than previously thought, with total described and provisional species number doubling from 5 to 10. Six of the taxonomic units recovered by DNA taxonomy agreed well with morphology, but DNA barcoding distinguished three clades each for the D. longispina (D. galeata, D. dentifera, and D. longispina) and D. pulex (D. pulex, D. cf. tenebrosa, and D. pulicaria) complexes. The sequence divergence between congeneric species varied within a large range, from 9.25% to 30.71%. The endemic D. tibetana was the most common and widespread species, occurring in 12 hyposaline to mesosaline lakes. The lineage of D. longispina is the first confirmed occurrence in west Tibet.

11.
Environ Sci Pollut Res Int ; 25(4): 3695-3707, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29168132

ABSTRACT

Heavy metal contamination has affected many regions in the world, particularly the developing countries of Asia. We investigated 8 heavy metals (Cu, Zn, Cd, Pb, Cr, Co, Ni, and As) in the surface sediments of 18 lakes on the Tibetan Plateau. It was found that the distributions of the heavy metals showed no clear spatial pattern on the plateau. The results indicated that the mean concentrations of these metals in the sediment samples diminished as follows: Cr > As > Zn > Ni > Pb > Cu > Co > Cd. The results of geoaccumulation index (I geo) and potential ecological risk factor (E ir ) assessments showed that the sediments were moderately polluted by Cd and As, which posed much higher risks than the other metals. The values of the potential ecological risk index (RI) showed that lake Bieruoze Co has been severely polluted by heavy metals. Principal component analysis, hierarchical cluster analysis, and Pearson correlation analysis results indicated that the 8 heavy metals in the lake surface sediments of the Tibetan Plateau could be classified into four groups. Group 1 included Cu, Zn, Pb, Co, and Ni which were mainly derived from both natural and traffic sources. Group 2 included Cd which mainly originated from anthropogenic sources like alloying, electroplating, and dyeing industries and was transported to the Tibetan Plateau by atmospheric circulation. Group 3 included Cr and it might mainly generate from parent rocks of watersheds. The last Group (As) was mainly from manufacturing, living, and the striking deterioration of atmospheric environment of the West, Central Asia, and South Asia.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Geologic Sediments/analysis , Lakes/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Cluster Analysis , Principal Component Analysis , Tibet
12.
Water Res ; 124: 618-629, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28822342

ABSTRACT

Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions.


Subject(s)
Lakes , Zooplankton , Animals , Climate , Global Warming , Phytoplankton , Salinity , Temperature , Tibet
13.
Huan Jing Ke Xue ; 37(2): 490-8, 2016 Feb 15.
Article in Chinese | MEDLINE | ID: mdl-27363135

ABSTRACT

To explore the source of heavy metals in lake sediments and their hazard to environment on Tibetan Plateau, China, heavy metal (Cu, Zn, Cd, Pb, Cr, Co, Ni and As) levels in surface sediments of 18 lakes were investigated. Inductively Coupled Plasma Mass Spectrometry (ICP-MS, X-7 series) was used to determine the contents of heavy metals and the concentrations of carbon and nitrogen in sediment samples were analyzed by element analyzer (Vario Max CN, Elementar, Germany). The average concentrations for Cu, Zn, Cd, Pb, Cr, Co, Ni and As were 24.61 mg x kg(-1), 70.14 mg x kg(-1), 0.26 mg x kg(-1), 25.43 mg x kg(-1), 74.12 mg x kg(-1), 7.93 mg x kg(-1), 33.85 mg x kg(-1), 77.69 mg x kg(-1). It was found that heavy-metal concentrations in Tibet sediments were higher than those in Antarctic, but lower than those in the regions affected by anthropogenic activities. The contents of Cu, Zn, Pb, Cr and Co in the samples were lower than the background values of Tibet. Correlation analysis and principal components analysis (PCA) were used to analyze the origins of heavy metals. The result showed that Cu, Zn, Cd, Pb, Co, Ni and As came from soil in drainage basin and atmospheric deposition. Cr was mainly affected by human activities. Assessment on ecological risk of heavy metals was carried out using Hakanson's method and cluster analysis (CA). Assessment on ecological risk indicated that Pumoyum Co, Longmo Co and Bangong Co were at low risks, Bieruoze Co was at high ecological risk level and the other lakes were at different risk levels.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Carbon/analysis , Lakes/chemistry , Risk Assessment , Soil/chemistry , Tibet
14.
Sci Rep ; 6: 27481, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27270951

ABSTRACT

Molecular distributions and stable carbon isotopic compositions (δ(13)C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19-C36), fatty acids (C8-C32) and n-alcohols (C16-C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ(13)C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from -34.1 to -24.7% and -26.9 to -24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China.

15.
FEMS Microbiol Ecol ; 92(3)2016 Mar.
Article in English | MEDLINE | ID: mdl-26887660

ABSTRACT

Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau.


Subject(s)
Archaea/isolation & purification , Geologic Sediments/microbiology , Lakes/microbiology , Altitude , Archaea/classification , Archaea/genetics , Archaea/metabolism , Geologic Sediments/chemistry , Lakes/chemistry , Molecular Sequence Data , Phylogeny , Salinity , Sodium Chloride/analysis , Sodium Chloride/metabolism , Tibet
16.
Environ Sci Technol ; 50(6): 2859-69, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26878654

ABSTRACT

Alpine lake sediments and glacier ice cores retrieved from high mountain regions can provide long-term records of atmospheric deposition of anthropogenic contaminants such as mercury (Hg). In this study, eight lake sediment cores and one glacier ice core were collected from high elevations across the Himalaya-Tibet region to investigate the chronology of atmospheric Hg deposition. Consistent with modeling results, the sediment core records showed higher Hg accumulation rates in the southern slopes of the Himalayas than those in the northern slopes in the recent decades (post-World War II). Despite much lower Hg accumulation rates obtained from the glacier ice core, the temporal trend in the Hg accumulation rates matched very well with that observed from the sediment cores. The combination of the lake sediments and glacier ice core allowed us to reconstruct the longest, high-resolution atmospheric Hg deposition chronology in High Asia. The chronology showed that the Hg deposition rate was low between the 1500s and early 1800, rising at the onset of the Industrial Revolution, followed by a dramatic increase after World War II. The increasing trend continues to the present-day in most of the records, reflecting the continuous increase in anthropogenic Hg emissions from South Asia.


Subject(s)
Air Pollutants/chemistry , Geologic Sediments/chemistry , Ice Cover/chemistry , Lakes/chemistry , Mercury/chemistry , Altitude , Asia , Atmosphere , Environmental Monitoring , Humans , Industry , Tibet
17.
FEMS Microbiol Ecol ; 89(2): 211-21, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24392778

ABSTRACT

Lakes of the Tibetan Plateau lack direct anthropogenic influences, providing pristine high-altitude (> 4000 m) sites to study microbial community structure. We collected samples from the pelagic, littoral, and riverine zones of Lake Bangongco, located on the western side of the Plateau, to characterize bacterial community composition and geochemistry in three distinct, but hydrologically connected aquatic environments during summer. Bacterial community composition differed significantly among zones, with communities changing from riverine zones dominated by Bacteroidetes to littoral and pelagic zones dominated by Gammaproteobacteria. Community composition was strongly related to the geochemical environment, particularly concentrations of major ions and total nitrogen. The dominance of Gammaproteobacteria in the pelagic zone contrasts with typical freshwater bacterial communities as well as other lakes on the Tibetan Plateau.


Subject(s)
Bacteroidetes/genetics , Gammaproteobacteria/genetics , Lakes/microbiology , Water Microbiology , Biodiversity , Molecular Sequence Data , Molecular Typing , Phylogeny , Phylogeography , Tibet
18.
Environ Microbiol ; 14(9): 2457-66, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22676420

ABSTRACT

Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4-1670 km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r=0.443, P=0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments.


Subject(s)
Bacterial Physiological Phenomena , Biodiversity , Geologic Sediments/microbiology , Lakes/microbiology , Soil Microbiology , Archaea/classification , Archaea/genetics , Archaea/physiology , Bacteria/classification , Bacteria/genetics , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Lakes/chemistry , Phylogeny
19.
Anal Chem ; 82(17): 7119-26, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20684521

ABSTRACT

The reliability of chronology is a prerequisite for meaningful paleoclimate reconstructions from sedimentary archives. The conventional approach of radiocarbon dating bulk organic carbon in lake sediments is often hampered by the old carbon effect, i.e., the assimilation of ancient dissolved inorganic carbon (DIC) derived from carbonate bedrocks or other sources. Therefore, radiocarbon dating is ideally performed on organic compounds derived from land plants that use atmospheric CO(2) and rapidly delivered to sediments. We demonstrate that lignin phenols isolated from lake sediments using reversed phase high performance liquid chromatography (HPLC) can serve as effective (14)C dating materials for establishing chronology during the late Quaternary. We developed a procedure to purify lignin phenols, building upon a published method. By isolating lignin from standard wood reference substances, we show that our method yields pure lignin phenols and consistent ages as the consensus ages and that our procedure does not introduce radiocarbon contamination. We further demonstrate that lignin phenol ages are compatible with varve counted and macrofossil dated sediment horizons in Steel Lake and Fayetteville Green Lake. Applying the new method to lake sediment cores from Lake Qinghai demonstrates that lignin phenol ages in Lake Qinghai are consistently younger than bulk total organic carbon (TOC) ages which are contaminated by old carbon effect. We also show that the age offset between lignin and bulk organic carbon differs at different Lake Qinghai sedimentary horizons, suggesting a variable hard water effect at different times and that a uniform age correction throughout the core is inappropriate.


Subject(s)
Carbon/chemistry , Gas Chromatography-Mass Spectrometry/methods , Geologic Sediments/chemistry , Lignin/chemistry , Phenols/chemistry , Radiometric Dating/methods , Carbon Radioisotopes/chemistry , Chromatography, High Pressure Liquid/methods , Phenols/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...