Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 491
Filter
1.
Front Immunol ; 15: 1381061, 2024.
Article in English | MEDLINE | ID: mdl-38774877

ABSTRACT

Background: Thyroid immune-related adverse events (irAEs) associated with immune checkpoint inhibitor (ICI) treatment appear to correlate with a better prognosis. We aimed to investigate clinical biomarkers associated with thyroid irAEs. Methods: We retrospectively analyzed data from 129 patients receiving programmed cell death protein 1 (PD-1) inhibitors for stage III and IV gastrointestinal tumors. Patients were divided into two groups: "thyroid irAEs" group and "no thyroid irAEs" group. We compared continuous variables using Mann-Whitney U and Kruskal-Wallis tests and categorical variables using Pearson's chi-square test. Survival curves were generated using the Kaplan-Meier method, and associations between clinical features and thyroid irAEs were assessed using univariate and multivariate logistic regression models. Associations for thyroid irAEs and outcomes [progression-free survival (PFS), overall survival (OS)] of the patients were performed with a Cox proportional hazard model. Results: A total of 129 patients, including 66 gastric cancer, 30 esophageal squamous cell carcinoma, and 33 hepatocellular carcinoma (HCC), were involved in this analysis with 47 cases of thyroid irAEs occurrence. The Cox proportional hazard model analysis confirmed the extended PFS [hazard rate (HR) = 0.447, 95% confidence interval (CI): 0.215 to 0.931, p = 0.031] and OS (HR = 0.424, 95% CI: 0.201 to 0.893, p = 0.024) for thyroid irAEs group when compared with those of the no thyroid irAEs group. Association between thyroid irAEs and clinical characteristics at baseline was analyzed subsequently by univariate analysis. Higher body mass index (p = 0.005), increased eosinophil count (p = 0.014), increased lactate dehydrogenase (p = 0.008), higher baseline thyroid stimulating hormone (TSH) (p = 0.001), HCC (p = 0.001) and increased adenosine deaminase (ADA) (p = 0.001) were linked with thyroid irAEs occurrence. The multivariable logistic regression model indicated that ADA [odds rate (OR) = 4.756, 95% CI: 1.147 to 19.729, p = 0.032] was independently associated with thyroid irAEs occurrence. Conclusions: Increased baseline level of ADA was associated with thyroid irAEs occurrence in patients with advanced gastrointestinal tumors who received ICI treatment. In the case of abnormal ADA, attention should be paid to the risk of thyroid irAEs.


Subject(s)
Gastrointestinal Neoplasms , Immune Checkpoint Inhibitors , Neoplasm Staging , Humans , Female , Male , Gastrointestinal Neoplasms/immunology , Gastrointestinal Neoplasms/drug therapy , Middle Aged , Aged , Retrospective Studies , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Adult , Thyroid Gland/pathology , Thyroid Gland/immunology , Thyroid Gland/metabolism , Prognosis , Biomarkers, Tumor
2.
Acta Pharm Sin B ; 14(5): 2317-2332, 2024 May.
Article in English | MEDLINE | ID: mdl-38799627

ABSTRACT

Autophagy is an important factor in reducing the efficacy of tumor phototherapy (including PTT and PDT). Accurate regulation of autophagy in tumor cells is a new strategy to improve the anti-tumor efficiency of PTT/PDT. This project intended to construct a tumor-activated autophagy regulator to efficiently block PTT/PDT-induced autophagy and realize synergistic sensitization to tumor phototherapy. To achieve this goal, we first synthesized TRANSFERRIN (Tf) biomimetic mineralized nano-tellurium (Tf-Te) as photosensitizer and then used disulfide bond reconstruction technology to induce Tf-Te self-assembly. The autophagy inhibitor hydroxychloroquine (HCQ) and iron ions carried by Tf were simultaneously loaded to prepare a tumor-responsive drug reservoir Tf-Te/HCQ. After entering breast cancer cells through the "self-guidance system", Tf-Te/HCQ can generate hyperpyrexia and ROS under NIR laser irradiation, to efficiently induce PTT/PDT effect. Meanwhile, the disulfide bond broke down in response to GSH, and the nanoparticles disintegrated to release Fe2+ and HCQ at fixed points. They simultaneously induce lysosomal alkalinization and increased osmotic pressure, effectively inhibit autophagy, and synergistically enhance the therapeutic effect of phototherapy. In vivo anti-tumor results have proved that the tumor inhibition rate of Tf-Te/HCQ can be as high as 88.6% on 4T1 tumor-bearing mice. This multifunctional drug delivery system might provide a new alternative for more precise and effective tumor phototherapy.

3.
Arch Esp Urol ; 77(3): 263-269, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38715167

ABSTRACT

OBJECT: This study aimed to analyse the risk factors and prognosis of sepsis complicated with acute kidney injury (AKI). METHODS: The clinical data of 324 patients with sepsis in the nephrology department of our hospital from January 2022 to January 2023 were collected. A total of 188 patients with AKI were the occurrence group, and 136 patients without AKI were the non-occurrence group. The influencing factors and prognosis of sepsis complicated with AKI were analysed. RESULTS: We observed significant differences in Acute Physiology and Chronic Health Evaluation II (APACHE II), total length of hospital stay, Intensive Care Unit (ICU) stay, mechanical ventilation support, diabetes mellitus and urine volume >1500 mL between the two groups (p < 0.05). After a follow-up period of 1 month, 125 (66.49%) of 188 patients with sepsis complicated with AKI died, and 63 (33.51%) survived. The results of logistic regression analysis showed that Sequential Organ Failure Assessment (SOFA), APACHE II, mechanical ventilation support, diabetes, urine volume >1500 mL and serum creatinine were independent risk factors of sepsis complicated with AKI (p < 0.05). Moreover, SOFA, APACHE II, ICU admission days, mechanical ventilation support, serum creatinine and non-continuous renal replacement therapy were independent risk factors of death in patients with sepsis complicated with AKI (p < 0.05). CONCLUSIONS: SOFA, APACHE II, ICU admission days, mechanical ventilation support, serum creatinine and non-continuous renal replacement therapy may be the influencing factors leading to death in patients with sepsis complicated with AKI. Early clinical intervention should be performed.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Acute Kidney Injury/complications , Sepsis/complications , Male , Female , Risk Factors , Prognosis , Middle Aged , Aged , Hospitalization , Retrospective Studies
4.
Biomed Environ Sci ; 37(4): 399-405, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727162

ABSTRACT

Objective: This study aimed to determine the current epidemiological status of PLWHA aged ≥ 50 years in China from 2018 to 2021. It also aimed to recommend targeted interventions for the prevention and treatment of HIV/AIDS in elderly patients. Methods: Data on newly reported cases of PLWHA, aged ≥ 50 years in China from 2018 to 2021, were collected using the CRIMS. Trend tests and spatial analyses were also conducted. Results: Between 2018 and 2021, 237,724 HIV/AIDS cases were reported among patients aged ≥ 50 years in China. The main transmission route was heterosexual transmission (91.24%). Commercial heterosexual transmission (CHC) was the primary mode of transmission among males, while non-marital non-CHC ([NMNCHC]; 60.59%) was the prevalent route in women. The proportion of patients with CHC decreased over time ( Z = 67.716, P < 0.01), while that of patients with NMNCHC increased ( Z = 153.05, P < 0.01). The sex ratio varied among the different modes of infection, and it peaked at 17.65 for CHC. The spatial analysis indicated spatial clustering, and the high-high clustering areas were mainly distributed in the southwestern and central-southern provinces. Conclusion: In China, PLWHA, aged ≥ 50 years, were predominantly infected through heterosexual transmission. The primary modes of infection were CHC and NMNCHC. There were variations in the sex ratio among different age groups, infected through various sexual behaviors. HIV/AIDS cases exhibited spatial clustering. Based on these results, the expansion of HIV testing, treatment, and integrated behavioral interventions in high-risk populations is recommended to enhance disease detection in key regions.


Subject(s)
Acquired Immunodeficiency Syndrome , Epidemics , HIV Infections , Humans , China/epidemiology , Male , Female , Middle Aged , Aged , HIV Infections/epidemiology , HIV Infections/transmission , Acquired Immunodeficiency Syndrome/epidemiology , Acquired Immunodeficiency Syndrome/transmission , Aged, 80 and over , Prevalence
5.
Comput Biol Med ; 177: 108642, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38820777

ABSTRACT

BACKGROUND: Drug-drug interaction events influence the effectiveness of drug combinations and can lead to unexpected side effects or exacerbate underlying diseases, jeopardizing patient prognosis. Most existing methods are restricted to predicting whether two drugs interact or the type of drug-drug interactions, while very few studies endeavor to predict the specific risk levels of side effects of drug combinations. METHODS: In this study, we propose MathEagle, a novel approach to predict accurate risk levels of drug combinations based on multi-head attention and heterogeneous attribute graph learning. Initially, we model drugs and three distinct risk levels between drugs as a heterogeneous information graph. Subsequently, behavioral and chemical structure features of drugs are utilized by message passing neural networks and graph embedding algorithms, respectively. Ultimately, MathEagle employs heterogeneous graph convolution and multi-head attention mechanisms to learn efficient latent representations of drug nodes and estimates the risk levels of pairwise drugs in an end-to-end manner. RESULTS: To assess the effectiveness and robustness of the model, five-fold cross-validation, ablation experiments, and case studies were conducted. MathEagle achieved an accuracy of 85.85 % and an AUC of 0.9701 on the drug risk level prediction task and is superior to all comparative models. The MathEagle predictor is freely accessible at http://120.77.11.78/MathEagle/. CONCLUSIONS: The experimental results indicate that MathEagle can function as an effective tool for predicting accurate risk of drug combinations, aiding in guiding clinical medication, and enhancing patient outcomes.

6.
Sci Rep ; 14(1): 12278, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38806559

ABSTRACT

Repair and reconstruction of the myopectineal orifice area using meshes is the mainstay of surgical treatment of inguinal hernias. However, the limitations of existing meshes are becoming increasingly evident in clinical applications; thus, the idea of using three-dimensionally (3D)-printed biological meshes was put forward. According to the current level of the 3D printing technology and the inherent characteristics of biological materials, the direct use of the 3D printing technology for making biological materials into finished products suitable for clinical applications is not yet supported, but synthetic materials can be first printed into 3D form carriers, compounded with biological materials, and finally made into finished products. The purpose of this study was to develop a technical protocol for making 3D-printed biomesh carriers using polyurethane as a raw material. In our study: raw material, polyurethane; weight, 20-30 g/m2; weaving method, hexagonal mesh; elastic tension aspect ratio, 2:1; diameters of pores, 0.1-1 mm; surface area, 8 × 12 cm2; the optimal printing layer height, temperature and velocity were 0.1 mm, 210-220 °C and 60 mm/s. Its clinical significance lies in: (1) applied to preoperative planning and design a detailed surgical plan; (2) applied to special types of surgery including patients in puberty, recurrent and compound inguinal hernias; (3) significantly improve the efficiency of doctor-patient communication; (4) it can shorten the operation and recovery period by about 1/3 and can save about 1/4 of the cost for patients; (5) the learning curve is significantly shortened, which is conducive to the cultivation of reserve talents.


Subject(s)
Polyurethanes , Printing, Three-Dimensional , Surgical Mesh , Polyurethanes/chemistry , Humans , Hernia, Inguinal/surgery , Biocompatible Materials/chemistry , Herniorrhaphy/methods , Herniorrhaphy/instrumentation , Materials Testing
7.
Apoptosis ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743191

ABSTRACT

Lenvatinib is a commonly used first-line drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its clinical efficacy is limited due to the drug resistance. EVA1A was a newly identified tumor suppressor, nevertheless, the impact of EVA1A on resistance to lenvatinib treatment in HCC and the potential molecular mechanisms remain unknown. In this study, the expression of EVA1A in HCC lenvatinib-resistant cells is decreased and its low expression was associated with a poor prognosis of HCC. Overexpression of EVA1A reversed lenvatinib resistance in vitro and in vivo, as demonstrated by its ability to promote cell apoptosis and inhibit cell proliferation, invasion, migration, EMT, and tumor growth. Silencing EVA1A in lenvatinib-sensitive parental HCC cells exerted the opposite effect and induced resistance to lenvatinib. Mechanistically, upregulated EVA1A inhibited the PI3K/AKT/MDM2 signaling pathway, resulting in a reduced interaction between MDM2 and p53, thereby stabilizing p53 and enhancing its antitumor activity. In addition, upregulated EVA1A suppressed the PI3K/AKT/mTOR signaling pathway and promoted autophagy, leading to the degradation of mutant p53 and attenuating its oncogenic impact. On the contrary, loss of EVA1A activated the PI3K/AKT/MDM2 signaling pathway and inhibited autophagy, promoting p53 proteasomal degradation and mutant p53 accumulation respectively. These findings establish a crucial role of EVA1A loss in driving lenvatinib resistance involving a mechanism of modulating PI3K/AKT/p53 signaling axis and suggest that upregulating EVA1A is a promising therapeutic strategy for alleviating resistance to lenvatinib, thereby improving the efficacy of HCC treatment.

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 230-235, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38557373

ABSTRACT

OBJECTIVES: To explore the risk factors associated with cow's milk protein allergy (CMPA) in infants. METHODS: This study was a multicenter prospective nested case-control study conducted in seven medical centers in Beijing, China. Infants aged 0-12 months were included, with 200 cases of CMPA infants and 799 control infants without CMPA. Univariate and multivariate logistic regression analyses were used to investigate the risk factors for the occurrence of CMPA. RESULTS: Univariate logistic regression analysis showed that preterm birth, low birth weight, birth from the first pregnancy, firstborn, spring birth, summer birth, mixed/artificial feeding, and parental history of allergic diseases were associated with an increased risk of CMPA in infants (P<0.05). Multivariate logistic regression analysis revealed that firstborn (OR=1.89, 95%CI: 1.14-3.13), spring birth (OR=3.42, 95%CI: 1.70-6.58), summer birth (OR=2.29, 95%CI: 1.22-4.27), mixed/artificial feeding (OR=1.57, 95%CI: 1.10-2.26), parental history of allergies (OR=2.13, 95%CI: 1.51-3.02), and both parents having allergies (OR=3.15, 95%CI: 1.78-5.56) were risk factors for CMPA in infants (P<0.05). CONCLUSIONS: Firstborn, spring birth, summer birth, mixed/artificial feeding, and a family history of allergies are associated with an increased risk of CMPA in infants.


Subject(s)
Milk Hypersensitivity , Premature Birth , Infant , Pregnancy , Female , Animals , Cattle , Infant, Newborn , Humans , Milk Hypersensitivity/etiology , Case-Control Studies , Prospective Studies , Premature Birth/chemically induced , Risk Factors , Milk Proteins
9.
J Chem Phys ; 160(13)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38557836

ABSTRACT

VO2 is renowned for its electric transition from an insulating monoclinic (M1) phase, characterized by V-V dimerized structures, to a metallic rutile (R) phase above 340 K. This transition is accompanied by a magnetic change: the M1 phase exhibits a non-magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments. Simultaneous simulation of the structural, electric, and magnetic properties of this compound is of fundamental importance, but the M1 phase alone has posed a significant challenge to the density functional theory (DFT). In this study, we show none of the commonly used DFT functionals, including those combined with on-site Hubbard U to treat 3d electrons better, can accurately predict the V-V dimer length. The spin-restricted method tends to overestimate the strength of the V-V bonds, resulting in a small V-V bond length. Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of these two bond-calculation methods underscores one of the two contentious mechanisms, i.e., Peierls lattice distortion or Mott localization due to electron-electron repulsion, involved in the metal-insulator transition in VO2. To elucidate the challenges encountered in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic sites, thereby revealing the inherent difficulties linked with the DFT computations.

10.
Mol Cell Biochem ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625515

ABSTRACT

Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.

11.
Inorg Chem ; 63(17): 7631-7639, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38625102

ABSTRACT

Two novel MoO42--templated luminescent silver alkynyl nanoclusters with 20-nuclearity ([(MoO42-)@Ag20(C≡CtBu)8(Ph2PO2)7(tfa)2]·(tfa-) (1)) and 18-nuclearity ([(MoO42-)@Ag18(C≡CtBu)8(Ph2PO2)7]·(OH) (2)) (tfa = trifluoroacetate) were synthesized with the green light maximum emissions at 507 and 516 nm, respectively. The nanoclusters were investigated and characterized by single-crystal X-ray crystallography, electrospray ionization mass spectrum (ESI-MS), X-ray photoelectron spectroscopy, thermogravimetry (TG), photoluminescence (PL), ultraviolet-visible (UV-vis) spectroscopy, and density functional theory calculations (DFT). The two nanoclusters differ in their structure by a supplementary [Ag2(tfa)2] organometallic surface motif, which significantly participates in the frontier molecular orbitals of 1, resulting in similar bonding patterns but different optical properties between the two clusters. Indeed, both nanoclusters show strong temperature-dependent photoluminescence properties, which make them potential candidates in the fields of optical devices for further applications.

12.
Arch Gynecol Obstet ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683394

ABSTRACT

PURPOSE: This study aimed to evaluate the clinical efficacy and safety of argon plasma coagulation (APC) therapy and interferon therapy in patients with grade I and II vaginal intraepithelial neoplasia (VaIN). METHODS: A total of 112 patients with VaIN were diagnosed via colposcopy-induced biopsy and classified into the APC group (n = 77) and interferon group (n = 35). Clinical data including age, grade, symptoms, historical or concomitant neoplasia of the lower genital tract, indications for hysterectomy, pregnancy history, cytology, human papillomavirus (HPV) subtype, treatment modalities, and clinical outcomes were analyzed, retrospectively. Complications and clinical outcomes were assessed at 6- and 12-month follow-ups. RESULTS: There was no significant difference in the HPV clearance rate between the APC (53.42%) and interferon (33.33%) groups at 6 months after treatment. However, the 12-month follow-up of the APC group showed a significantly higher HPV clearance rate as compared to the interferon group (87.67% vs. 51.52%, P < 0.05). The APC group exhibited a significantly higher cure rate (79.22% vs. 40.0%) and lower persistence rate (12.99% vs. 37.14%) than the interferon group (P < 0.05). Adverse reaction analysis revealed that the primary reaction in the APC group was vaginal drainage, in contrast to the increased vaginal discharge in the interferon group; though the difference was significant (68.83% vs. 28.57%, P < 0.05), no serious complications were observed. CONCLUSIONS: Treatment with APC is a safe and more effective procedure against VaIN I and II, compared to interferon. APC may serve as a viable alternative to other physiotherapies.

13.
BMC Infect Dis ; 24(1): 426, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649799

ABSTRACT

BACKGROUND: Severe acute respiratory infection (SARI), a significant global health concern, imposes a substantial disease burden. In China, there is inadequate data concerning the monitoring of respiratory pathogens, particularly bacteria, among patients with SARI. Therefore, this study aims to delineate the demographic, epidemiological, and aetiological characteristics of hospitalised SARI patients in Central China between 2018 and 2020. METHODS: Eligible patients with SARI admitted to the First Affiliated Hospital of Zhengzhou University between 1 January 2018 and 31 December 2020 were included in this retrospective study. Within the first 24 h of admission, respiratory (including sputum, nasal/throat swabs, bronchoalveolar lavage fluid, thoracocentesis fluid, etc.), urine, and peripheral blood specimens were collected for viral and bacterial testing. A multiplex real-time polymerase chain reaction (PCR) diagnostic approach was used to identify human influenza virus, respiratory syncytial virus, parainfluenza virus, adenovirus, human bocavirus, human coronavirus, human metapneumovirus, and rhinovirus. Bacterial cultures of respiratory specimens were performed with a particular focus on pathogenic microorganisms, including S. pneumoniae, S. aureus, K. pneumoniae, P. aeruginosa, Strep A, H. influenzae, A. baumannii, and E. coli. In cases where bacterial culture results were negative, nucleic acid extraction was performed for PCR to assay for the above-mentioned eight bacteria, as well as L. pneumophila and M. pneumoniae. Additionally, urine specimens were exclusively used to detect Legionella antigens. Furthermore, epidemiological, demographic, and clinical data were obtained from electronic medical records. RESULTS: The study encompassed 1266 patients, with a mean age of 54 years, among whom 61.6% (780/1266) were males, 61.4% (778/1266) were farmers, and 88.8% (1124/1266) sought medical treatment in 2020. Moreover, 80.3% (1017/1266) were housed in general wards. The most common respiratory symptoms included fever (86.8%, 1122/1266) and cough (77.8%, 986/1266). Chest imaging anomalies were detected in 62.6% (792/1266) of cases, and 58.1% (736/1266) exhibited at least one respiratory pathogen, with 28.5% (361/1266) having multiple infections. Additionally, 95.7% (1212/1266) of the patients were from Henan Province, with the highest proportion (38.3%, 486/1266) falling in the 61-80 years age bracket, predominantly (79.8%, 1010/1266) seeking medical aid in summer and autumn. Bacterial detection rate (39.0%, 495/1266) was higher than viral detection rate (36.9%, 468/1266), with the primary pathogens being influenza virus (13.8%, 175/1266), K. pneumoniae (10.0%, 127/1266), S. pneumoniae (10.0%, 127/1266), adenovirus (8.2%, 105/1266), P. aeruginosa (8.2%, 105/1266), M. pneumoniae (7.8%, 100/1266), and respiratory syncytial virus (7.7%, 98/1266). During spring and winter, there was a significant prevalence of influenza virus and human coronavirus, contrasting with the dominance of parainfluenza viruses in summer and autumn. Respiratory syncytial virus and rhinovirus exhibited higher prevalence across spring, summer, and winter. P. aeruginosa, K. pneumoniae, and M. pneumoniae were identified at similar rates throughout all seasons without distinct spikes in prevalence. However, S. pneumoniae showed a distinctive pattern with a prevalence that doubled during summer and winter. Moreover, the positive detection rates of various other viruses and bacteria were lower, displaying a comparatively erratic prevalence trend. Among patients admitted to the intensive care unit, the predominant nosocomial bacteria were K. pneumoniae (17.2%, 43/249), A. baumannii (13.6%, 34/249), and P. aeruginosa (12.4%, 31/249). Conversely, in patients from general wards, predominant pathogens included influenza virus (14.8%, 151/1017), S. pneumoniae (10.4%, 106/1017), and adenovirus (9.3%, 95/1017). Additionally, paediatric patients exhibited significantly higher positive detection rates for influenza virus (23.9%, 11/46) and M. pneumoniae (32.6%, 15/46) compared to adults and the elderly. Furthermore, adenovirus (10.0%, 67/669) and rhinovirus (6.4%, 43/669) were the primary pathogens in adults, while K. pneumoniae (11.8%, 65/551) and A. baumannii (7.1%, 39/551) prevailed among the elderly, indicating significant differences among the three age groups. DISCUSSION: In Central China, among patients with SARI, the prevailing viruses included influenza virus, adenovirus, and respiratory syncytial virus. Among bacteria, K. pneumoniae, S. pneumoniae, P. aeruginosa, and M. pneumoniae were frequently identified, with multiple infections being very common. Additionally, there were substantial variations in the pathogen spectrum compositions concerning wards and age groups among patients. Consequently, this study holds promise in offering insights to the government for developing strategies aimed at preventing and managing respiratory infectious diseases effectively.


Subject(s)
Respiratory Tract Infections , Humans , China/epidemiology , Retrospective Studies , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/microbiology , Male , Female , Middle Aged , Adult , Aged , Adolescent , Young Adult , Child , Child, Preschool , Acute Disease , Infant , Aged, 80 and over , Viruses/isolation & purification , Viruses/classification , Viruses/genetics , Hospitalization/statistics & numerical data
14.
AJNR Am J Neuroradiol ; 45(4): 504-510, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38453416

ABSTRACT

BACKGROUND AND PURPOSE: The habenula is a key node in the regulation of emotion-related behavior. Accurate visualization of the habenula and its reliable quantitative analysis is vital for the assessment of psychiatric disorders. To obtain high-contrast habenula images and allow them to be compatible with clinical applications, this preliminary study compared 3T MP2RAGE and quantitative susceptibility mapping with MPRAGE by evaluating the habenula segmentation performance. MATERIALS AND METHODS: Ten healthy volunteers were scanned twice with 3T MPRAGE and MP2RAGE and once with quantitative susceptibility mapping. Image quality and visibility of habenula anatomic features were analyzed by 3 radiologists using a 5-point scale. Contrast assessments of the habenula and thalamus were also performed. The reproducibility of the habenula volume from MPRAGE and MP2RAGE was evaluated by manual segmentation and the Multiple Automatically Generated Template brain segmentation algorithm (MAGeTbrain). T1 values and susceptibility were measured in the whole habenula and habenula geometric subregion using MP2RAGE T1-mapping and quantitative susceptibility mapping. RESULTS: The 3T MP2RAGE and quantitative susceptibility mapping demonstrated clear boundaries and anatomic features of the habenula compared with MPRAGE, with a higher SNR and contrast-to-noise ratio (all P < .05). Additionally, 3T MP2RAGE provided reliable habenula manual and MAGeTbrain segmentation volume estimates with greater reproducibility. T1-mapping derived from MP2RAGE was highly reliable, and susceptibility contrast was highly nonuniform within the habenula. CONCLUSIONS: We identified an optimized sequence combination (3T MP2RAGE combined with quantitative susceptibility mapping) that may be useful for enhancing habenula visualization and yielding more reliable quantitative data.


Subject(s)
Habenula , Humans , Habenula/diagnostic imaging , Reproducibility of Results , Algorithms , Magnetic Resonance Imaging/methods , Healthy Volunteers , Brain
15.
J Nanobiotechnology ; 22(1): 104, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468289

ABSTRACT

Modulating macrophages presents a promising avenue in tumor immunotherapy. However, tumor cells have evolved mechanisms to evade macrophage activation and phagocytosis. Herein, we introduced a bispecific antibody-based nanoengager to facilitate the recognition and phagocytosis of tumor cells by macrophages. Specifically, we genetically engineered two single chain variable fragments (scFv) onto cell membrane: anti-CD40 scFv for engaging with macrophages and anti-Claudin18.2 (CLDN18.2) scFv for interacting with tumor cells. These nanoengagers were further constructed by coating scFv-anchored membrane into PLGA nanoparticle core. Our developed nanoengagers significantly boosted immune responses, including increased recognition and phagocytosis of tumor cells by macrophages, enhanced activation and antigen presentation, and elevated cytotoxic T lymphocyte activity. These combined benefits resulted in enhancing antitumor efficacy against highly aggressive "cold" pancreatic cancer. Overall, this study offers a versatile nanoengager design for immunotherapy, achieved through genetically engineering to incorporate antibody-anchored membrane.


Subject(s)
Antibodies, Bispecific , Neoplasms , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/therapy , Immunotherapy/methods , Genetic Engineering , T-Lymphocytes, Cytotoxic , Claudins
16.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474562

ABSTRACT

Regulator of ribosome synthesis 1 (RRS1), a crucial regulatory factor in ribosome biogenesis, exerts a remarkable impact on the progression of breast cancer (BC). However, the exact mechanisms and pathways have not yet been fully elucidated. To investigate the impact of RRS1 on BC growth and metastasis, along with its underlying mechanisms. We discovered that RRS1 is overexpressed in BC tissues and cell lines. This study aims to regulate the level of RRS1 through lentiviral transfection technology to explore its potential function in BC cells. Knockdown of RRS1 resulted in the inhibition of cell proliferation, invasion, and migration, whereas overexpression had the opposite effects. We firstly identified the interaction between RRS1 and Glucose-Regulated Protein 78 (GRP78) using Co-immunoprecipitation (Co-IP) combined with mass spectrometry analysis, providing evidences of co-localization and positive regulation between RRS1 and GRP78. We observed that RRS1 inhibited the degradation of GRP78 through the ubiquitin-proteasome pathway, resulting in the stabilization of GRP78. In addition, our findings suggested that RRS1 promoted BC progression by activating the GRP78-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In conclusion, this newly discovered RRS1/GRP78 signaling axis provides a molecular and theoretical basis for further exploring the mechanisms of breast cancer invasion and metastasis.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Endoplasmic Reticulum Chaperone BiP , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Ribosomes/metabolism , RNA-Binding Proteins
17.
Asian J Pharm Sci ; 19(1): 100888, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38434719

ABSTRACT

Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy, but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration. Herein, we designed a cancer-associated fibroblasts (CAFs) triggered structure-transformable nano-assembly (HSD-P@V), which can directionally deliver valsartan (Val, CAFs regulator) and doxorubicin (DOX, senescence inducer) to the specific targets. In detail, DOX is conjugated with hyaluronic acid (HA) via diselenide bonds (Se-Se) to form HSD micelles, while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer, which is coated on Val nanocrystals (VNs) surface for improving the stability and achieving responsive release. Once arriving at tumor microenvironment and touching CAFs, HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment. VNs can degrade the extracellular matrix, leading to the enhanced penetration of HSD. HSD targets tumor cells, releases DOX to induce senescence, and recruits effector immune cells. Furthermore, senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy. In vitro and in vivo results show that the nano-assembly remarkably inhibits tumor growth as well as lung metastasis, and extends tumor-bearing mice survival. This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.

18.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316711

ABSTRACT

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Subject(s)
Antioxidants , Biosensing Techniques , Peroxidase , Hydrogen Peroxide/analysis , Zirconium , Carbon , Electrodes , Peroxidases , Oxygen , Tea , Biosensing Techniques/methods , Electrochemical Techniques/methods
19.
Signal Transduct Target Ther ; 9(1): 32, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38351062

ABSTRACT

The appropriate and specific response of nerve cells to various external cues is essential for the establishment and maintenance of neural circuits, and this process requires the proper recruitment of adaptor molecules to selectively activate downstream pathways. Here, we identified that DOK6, a member of the Dok (downstream of tyrosine kinases) family, is required for the maintenance of peripheral axons, and that loss of Dok6 can cause typical peripheral neuropathy symptoms in mice, manifested as impaired sensory, abnormal posture, paw deformities, blocked nerve conduction, and dysmyelination. Furthermore, Dok6 is highly expressed in peripheral neurons but not in Schwann cells, and genetic deletion of Dok6 in peripheral neurons led to typical peripheral myelin outfolding, axon destruction, and hindered retrograde axonal transport. Specifically, DOK6 acts as an adaptor protein for selectivity-mediated neurotrophic signal transduction and retrograde transport for TrkC and Ret but not for TrkA and TrkB. DOK6 interacts with certain proteins in the trafficking machinery and controls their phosphorylation, including MAP1B, Tau and Dynein for axonal transport, and specifically activates the downstream ERK1/2 kinase pathway to maintain axonal survival and homeostasis. This finding provides new clues to potential insights into the pathogenesis and treatment of hereditary peripheral neuropathies and other degenerative diseases.


Subject(s)
Peripheral Nervous System Diseases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Axons/metabolism , Axons/pathology , Neurons/metabolism , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Signal Transduction/genetics
20.
Sci Rep ; 14(1): 3265, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331968

ABSTRACT

An increasing number of studies have indicated the crucial involvement of long non-coding RNAs (lncRNAs) in the onset and progression of malignancies. However, a complete understanding of the molecular mechanism underlying the effect of abnormally expressed lncRNAs on breast cancer (BC) remains elusive. This study aimed to elucidate the influence of the lncRNA small nucleolar RNA host gene 1 (SNHG1) on BC progression and its underlying mechanism. Our findings revealed a conspicuous up-regulation of SNHG1 in both BC tissues and cells. The downregulation of SNHG1 was observed to inhibit BC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes, while simultaneously promoting apoptosis. Furthermore, dual-luciferase reporter gene and RNA pull-down assays established that SNHG1 targeted miR-641 expression, while miR-641 targeted RRS1. Rescue studies demonstrated that in vitro SNHG1 silencing could be reversed by the miR-641 inhibitor, as well as by RRS1 upregulation. Moreover, in vivo downregulation of SNHG1 was found to inhibit BC growth. Through the inhibition of the miR-641 level, SNHG1 elevated the level of the downstream target RRS1, thereby fostering BC growth, migration, and invasion while inhibiting apoptosis. These findings suggest that SNHG1 may represent a potential therapeutic target for BC treatment.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Female , Humans , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Processes , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...