Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioelectrochemistry ; 157: 108672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428185

ABSTRACT

Modern biosensing technology plays a crucial role in combating the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). However, the associated assays remain costly, considering their extensive daily use. In response, we developed a simplified one-step SARS-CoV-2 protease assay that reduces both time and financial expenses. This approach eliminates the need for extra reagents, enzymes, or antibodies. The simplification involves a photo-sensitive Bengal red-tagged substrate peptide, allowing specific cross-linking upon protease-substrate recognition. This process forms a di-tyrosine product with a distinctive fluorescence signal readout, enabling the detection of SARS-CoV-2 in patient serum samples. This method anticipates a major reduction in assay costs in the near future.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Indicators and Reagents , Antibodies, Viral , Proteins , Peptides , Peptide Hydrolases
2.
Nat Commun ; 14(1): 8519, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129386

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling pathway plays a critical protective role against viral infections. Metazoan STING undergoes multilayers of regulation to ensure specific signal transduction. However, the mechanisms underlying the regulation of bacterial STING remain unclear. In this study, we determined the crystal structure of anti-parallel dimeric form of bacterial STING, which keeps itself in an inactive state by preventing cyclic dinucleotides access. Conformational transition between inactive and active states of bacterial STINGs provides an on-off switch for downstream signaling. Some bacterial STINGs living in extreme environment contain an insertion sequence, which we show codes for an additional long lid that covers the ligand-binding pocket. This lid helps regulate anti-phage activities. Furthermore, bacterial STING can bind cyclic di-AMP in a triangle-shaped conformation via a more compact ligand-binding pocket, forming spiral-shaped protofibrils and higher-order fibril filaments. Based on the differences between cyclic-dinucleotide recognition, oligomerization, and downstream activation of different bacterial STINGs, we proposed a model to explain structure-function evolution of bacterial STINGs.


Subject(s)
Bacteria , Signal Transduction , Animals , Ligands , Bacteria/metabolism , Genes, Bacterial , Nucleotidyltransferases/metabolism , Immunity, Innate
3.
Anal Chem ; 95(43): 15950-15955, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37856656

ABSTRACT

Venous thromboembolism (VTE) is a complication of Dravet syndrome, accounting for many unexpected deaths. To control VTE more tightly and to prevent such tragedies, a reliable and low-cost risk evaluation assay is urgently needed, so that the daily routine of VTE risk evaluation can be established. In this work, we have developed such an assay combining the photocatalytic activity of Bengal red to trigger the target-specific self-splicing of a peptide probe and subsequent cross-linking with P-selectin. Following this protocol, a robust and one-step detection can be achieved, without using any costly enzymes, antibodies, or nanomaterials, but the same level of sensitivity and robustness can be attained. Specifically, the effect of epilepsy on elevating platelet P-selectin can be observed by using the proposed assay. This may in the near future promise a new method for evaluating the side effects of P-selectin through relatively noninvasive peripheral blood sampling.


Subject(s)
Epilepsies, Myoclonic , Venous Thromboembolism , Humans , Venous Thromboembolism/diagnosis , Venous Thromboembolism/prevention & control , P-Selectin , Blood Platelets , Peptides
4.
Nat Commun ; 14(1): 5078, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604815

ABSTRACT

Purine-containing nucleotide second messengers regulate diverse cellular activities. Cyclic di-pyrimidines mediate anti-phage functions in bacteria; however, the synthesis mechanism remains elusive. Here, we determine the high-resolution structures of cyclic di-pyrimidine-synthesizing cGAS/DncV-like nucleotidyltransferases (CD-NTases) in clade E (CdnE) in its apo, substrate-, and intermediate-bound states. A conserved (R/Q)xW motif controlling the pyrimidine specificity of donor nucleotide is identified. Mutation of Trp or Arg from the (R/Q)xW motif to Ala rewires its specificity to purine nucleotides, producing mixed purine-pyrimidine cyclic dinucleotides (CDNs). Preferential binding of uracil over cytosine bases explains the product specificity of cyclic di-pyrimidine-synthesizing CdnE to cyclic di-UMP (cUU). Based on the intermediate-bound structures, a synthetic pathway for cUU containing a unique 2'3'-phosphodiester linkage through intermediate pppU[3'-5']pU is deduced. Our results provide a framework for pyrimidine selection and establish the importance of conserved residues at the C-terminal loop for the specificity determination of CD-NTases.


Subject(s)
Nucleotidyltransferases , Pyrimidines , Nucleotidyltransferases/genetics , Nucleotides , Chromogranin A , Purine Nucleotides
5.
Int J Biol Macromol ; 237: 123656, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36796558

ABSTRACT

Under selective pressure, bacteria have evolved diverse defense systems against phage infections. The SMODS-associated and fused to various effector domains (SAVED)-domain containing proteins were identified as major downstream effectors in cyclic oligonucleotide-based antiphage signaling system (CBASS) for bacterial defense. Recent study structurally characterizes a cGAS/DncV-like nucleotidyltransferase (CD-NTase)-associated protein 4 from Acinetobacter baumannii (AbCap4) in complex with 2'3'3'-cyclic AMP-AMP-AMP (cAAA). However, the homologue Cap4 from Enterobacter cloacae (EcCap4) is activated by 3'3'3'-cyclic AMP-AMP-GMP (cAAG). To elucidate the ligand specificity of Cap4 proteins, we determined the crystal structures of full-length wild-type and K74A mutant of EcCap4 to 2.18 and 2.42 Å resolution, respectively. The DNA endonuclease domain of EcCap4 shares similar catalytic mechanism with type II restriction endonuclease. Mutating the key residue K74 in the conserved DXn(D/E)XK motif completely abolishes its DNA degradation activity. The potential ligand-binding cavity of EcCap4 SAVED domain is located adjacent to its N-terminal domain, significantly differing from the centrally located cavity of AbCap4 SAVED domain which recognizes cAAA. Based on structural and bioinformatic analysis, we found that Cap4 proteins can be classified into two types: the type I Cap4, like AbCap4, recognize cAAA and the type II Cap4, like EcCap4, bind cAAG. Several conserved residues identified at the surface of potential ligand-binding pocket of EcCap4 SAVED domain are confirmed by ITC experiment for their direct binding roles for cAAG. Changing Q351, T391 and R392 to alanine abolished the binding of cAAG by EcCap4 and significantly reduced the anti-phage ability of the E. cloacae CBASS system constituting EcCdnD (CD-NTase in clade D) and EcCap4. In summary, we revealed the molecular basis for specific cAAG recognition by the C-terminal SAVED domain of EcCap4 and demonstrates the structural differences for ligand discrimination among different SAVED-domain containing proteins.


Subject(s)
Bacteriophages , Bacteriophages/metabolism , Bacterial Proteins/chemistry , Oligonucleotides , Ligands , Cyclic GMP/metabolism , Bacteria/metabolism , Cyclic AMP
6.
J Food Biochem ; 46(10): e14354, 2022 10.
Article in English | MEDLINE | ID: mdl-35894128

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several vaccines against SARS-CoV-2 have been approved; however, variants of concern (VOCs) can evade vaccine protection. Therefore, developing small compound drugs that directly block the interaction between the viral spike glycoprotein and ACE2 is urgently needed to provide a complementary or alternative treatment for COVID-19 patients. We developed a viral infection assay to screen a library of approximately 126 small molecules and showed that peimine inhibits VOCs viral infections. In addition, a fluorescence resonance energy transfer (FRET) assay showed that peimine suppresses the interaction of spike and ACE2. Molecular docking analysis revealed that peimine exhibits a higher binding affinity for variant spike proteins and is able to form hydrogen bonds with N501Y in the spike protein. These results suggest that peimine, a compound isolated from Fritillaria, may be a potent inhibitor of SARS-CoV-2 variant infection. PRACTICAL APPLICATIONS: In this study, we identified a naturally derived compound of peimine, a major bioactive alkaloid extracted from Fritillaria, that could inhibit SARS-CoV-2 variants of concern (VOCs) viral infection in 293T/ACE2 and Calu-3 lung cells. In addition, peimine blocks viral entry through interruption of spike and ACE2 interaction. Moreover, molecular docking analysis demonstrates that peimine has a higher binding affinity on N501Y in the spike protein. Furthermore, we found that Fritillaria significantly inhibits SARS-CoV-2 viral infection. These results suggested that peimine and Fritillaria could be a potential functional drug and food for COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Cevanes , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , COVID-19 Vaccines , Glycoproteins , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/metabolism , Virus Internalization
7.
J Biol Chem ; 298(3): 101658, 2022 03.
Article in English | MEDLINE | ID: mdl-35101449

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Subject(s)
Aminoquinolines , Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , SARS-CoV-2 , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Virus Internalization/drug effects
8.
Nat Commun ; 13(1): 26, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013136

ABSTRACT

Mammalian innate immune sensor STING (STimulator of INterferon Gene) was recently found to originate from bacteria. During phage infection, bacterial STING sense c-di-GMP generated by the CD-NTase (cGAS/DncV-like nucleotidyltransferase) encoded in the same operon and signal suicide commitment as a defense strategy that restricts phage propagation. However, the precise binding mode of c-di-GMP to bacterial STING and the specific recognition mechanism are still elusive. Here, we determine two complex crystal structures of bacterial STING/c-di-GMP, which provide a clear picture of how c-di-GMP is distinguished from other cyclic dinucleotides. The protein-protein interactions further reveal the driving force behind filament formation of bacterial STING. Finally, we group the bacterial STING into two classes based on the conserved motif in ß-strand lid, which dictate their ligand specificity and oligomerization mechanism, and propose an evolution-based model that describes the transition from c-di-GMP-dependent signaling in bacteria to 2'3'-cGAMP-dependent signaling in eukaryotes.


Subject(s)
Bacteria/metabolism , Immunity, Innate , Membrane Proteins/chemistry , Crystallography, X-Ray , Cyclic GMP/analogs & derivatives , Cyclic GMP/chemistry , Dinucleoside Phosphates , Humans , Interferons , Ligands , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Prevotella
9.
Front Pharmacol ; 12: 764191, 2021.
Article in English | MEDLINE | ID: mdl-34867388

ABSTRACT

Three type III secretion system (T3SS) inhibitors (compounds 5, 19, and 32) were identified by virtual screening and biological evaluation. These three compounds were evaluated against a panel of Salmonella species strains including S. enteritidis, S. typhi, S. typhimurium, S. paratyphi, and S. abortus equi, and their minimum inhibitory concentrations ranged from 1 to 53 µg/ml. Especially, these compounds showed comparable activity as the of the positive control gatifloxacin towards S. abortus equi. The present results suggest that these new T3SS inhibitors could be used as a potential lead molecule for drug development of anti-Salmonella.

10.
Nucleic Acids Res ; 49(8): 4725-4737, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33836064

ABSTRACT

Mammalian cyclic GMP-AMP synthase (cGAS) and its homologue dinucleotide cyclase in Vibrio cholerae (VcDncV) produce cyclic dinucleotides (CDNs) that participate in the defense against viral infection. Recently, scores of new cGAS/DncV-like nucleotidyltransferases (CD-NTases) were discovered, which produce various CDNs and cyclic trinucleotides (CTNs) as second messengers. Here, we present the crystal structures of EcCdnD, a CD-NTase from Enterobacter cloacae that produces cyclic AMP-AMP-GMP, in its apo-form and in complex with ATP, ADP and AMPcPP, an ATP analogue. Despite the similar overall architecture, the protein shows significant structural variations from other CD-NTases. Adjacent to the donor substrate, another nucleotide is bound to the acceptor binding site by a non-productive mode. Isothermal titration calorimetry results also suggest the presence of two ATP binding sites. GTP alone does not bind to EcCdnD, which however binds to pppApG, a possible intermediate. The enzyme is active on ATP or a mixture of ATP and GTP, and the best metal cofactor is Mg2+. The conserved residues Asp69 and Asp71 are essential for catalysis, as indicated by the loss of activity in the mutants. Based on structural analysis and comparison with VcDncV and RNA polymerase, a tentative catalytic pathway for the CTN-producing EcCdnD is proposed.


Subject(s)
Adenosine Triphosphate/chemistry , Enterobacter cloacae/chemistry , Magnesium/chemistry , Nucleotides, Cyclic/chemistry , Nucleotidyltransferases/chemistry , Binding Sites , Calorimetry, Differential Scanning , Catalysis , Crystallography, X-Ray , Enterobacter cloacae/enzymology , Guanosine Triphosphate/chemistry , Ligands , Mutation , Nucleotidyltransferases/chemical synthesis
11.
Am J Cancer Res ; 10(8): 2535-2545, 2020.
Article in English | MEDLINE | ID: mdl-32905393

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or 2019 novel coronavirus (2019-nCoV), took tens of thousands of lives and caused tremendous economic losses. The main protease (Mpro) of SARS-CoV-2 is a potential target for treatment of COVID-19 due to its critical role in maturation of viral proteins and subsequent viral replication. Conceptually and technically, targeting therapy against Mpro is similar to target therapy to treat cancer. Previous studies show that GC376, a broad-spectrum dipeptidyl Mpro inhibitor, efficiently blocks the proliferation of many animal and human coronaviruses including SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), porcine epidemic diarrhea virus (PEDV), and feline infectious peritonitis virus (FIPV). Due to the conservation of structure and catalytic mechanism of coronavirus main protease, repurposition of GC376 against SARS-CoV-2 may be an effective way for the treatment of COVID-19 in humans. To validate this conjecture, the binding affinity and IC50 value of Mpro with GC376 was determined by isothermal titration calorimetry (ITC) and fluorescence resonance energy transfer (FRET) assay, respectively. The results showed that GC376 binds to SARS-CoV-2 Mpro tightly (KD = 1.6 µM) and efficiently inhibit its proteolytic activity (IC50 = 0.89 µM). We also elucidate the high-resolution structure of dimeric SARS-CoV-2 Mpro in complex with GC376. The cocrystal structure showed that GC376 and the catalytic Cys145 of Mpro covalently linked through forming a hemithioacetal group and releasing a sulfonic acid group. Because GC376 is already known as a broad-spectrum antiviral medication and successfully used in animal, it will be a suitable candidate for anti-COVID-19 treatment.

12.
Am J Cancer Res ; 10(12): 4538-4546, 2020.
Article in English | MEDLINE | ID: mdl-33415017

ABSTRACT

The cell surface protein TMPRSS2 (transmembrane protease serine 2) is an androgen-responsive serine protease important for prostate cancer progression and therefore an attractive therapeutic target. Besides its role in tumor biology, TMPRSS2 is also a key player in cellular entry by the SARS-CoV viruses. The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has resulted in huge losses in socio-economy, culture, and human lives for which safe and effective cures are highly demanded. The main protease (Mpro/3CLpro) of SARS-CoV-2 is a critical enzyme for viral propagation in host cells and, like TMPRSS2, has been exploited for treatment of the infectious disease. Numerous natural compounds abundant in common fruits have been suggested with anti-coronavirus infection in the previous outbreaks of SARS-CoV. Here we show that screening of these compounds identified tannic acid a potent inhibitor of both SARS-CoV-2 Mpro and TMPRSS2. Molecular analysis demonstrated that tannic acid formed a thermodynamically stable complex with the two proteins at a KD of 1.1 mM for Mpro and 1.77 mM for TMPRSS2. Tannic acid inhibited the activities of the two proteases with an IC50 of 13.4 mM for Mpro and 2.31 mM for TMPRSS2. Mpro protein. Consistently, functional assays using the virus particles pseudotyped (Vpp) of SARS-CoV2-S demonstrated that tannic acid suppressed viral entry into cells. Thus, our results demonstrate that tannic acid has high potential of developing anti-COVID-19 therapeutics as a potent dual inhibitor of two independent enzymes essential for SARS-CoV-2 infection.

13.
ACS Appl Mater Interfaces ; 10(36): 30607-30613, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30118201

ABSTRACT

Interfacial engineering is a simple and effective strategy that can improve the photovoltaic performance in organic-inorganic perovskite solar cells (PSCs). Herein, a dopamine (DA) self-assembled monolayer (SAM) was introduced on the top of the SnO2 electron transporting layer (ETL) to modify the SnO2/perovskite interface. The processing temperature of the present devices is around 150 °C, and the power conversion efficiency of the PSCs was significantly improved to 16.65% compared to that of the device without modification (14.05%). Such enhancement in efficiency is mainly attributed to the improved quality of perovskite films by improving the affinity of the SnO2 ETL, thus leading to better carrier transport and low charge recombination at the SnO2/perovskite interface. Moreover, the modified device by the DA SAM exhibited enhanced stability compared to the device without modification. Our results suggest that the introduction of the DA SAM on the ETL/perovskite interface is a promising method for highly efficient and stable PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...