Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 9(2): 217-227, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36844503

ABSTRACT

The 3C-like protease (3CLpro) is an essential enzyme for the replication of SARS-CoV-2 and other coronaviruses and thus is a target for coronavirus drug discovery. Nearly all inhibitors of coronavirus 3CLpro reported so far are covalent inhibitors. Here, we report the development of specific, noncovalent inhibitors of 3CLpro. The most potent one, WU-04, effectively blocks SARS-CoV-2 replications in human cells with EC50 values in the 10-nM range. WU-04 also inhibits the 3CLpro of SARS-CoV and MERS-CoV with high potency, indicating that it is a pan-inhibitor of coronavirus 3CLpro. WU-04 showed anti-SARS-CoV-2 activity similar to that of PF-07321332 (Nirmatrelvir) in K18-hACE2 mice when the same dose was administered orally. Thus, WU-04 is a promising drug candidate for coronavirus treatment.

2.
Microbiol Spectr ; 10(4): e0255921, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35758897

ABSTRACT

The 3C-like protease (3CLpro) of SARS-CoV-2 is an attractive drug target for developing antivirals against SARS-CoV-2. A few small molecule inhibitors of 3CLpro are in clinical trials for COVID-19 treatments, and more inhibitors are under development. One limiting factor for 3CLpro inhibitors development is that the cellular activities of such inhibitors should be evaluated in Biosafety Level 3 (BSL-3) laboratories. Here, we design DNA-coded biosensors that can be used in BSL-2 laboratories to set up cell-based assays for 3CLpro inhibitor discovery. The biosensors were constructed by linking a green fluorescent protein (GFP2) to the N-terminus and a Renilla luciferase (RLuc8) to the C-terminus of SARS-CoV-2 3CLpro, with the linkers derived from the cleavage sequences of 3CLpro. After overexpression of the biosensors in human embryonic kidney (HEK) 293T cells, 3CLpro can be released from GFP2 and RLuc by self-cleavage, resulting in a decrease of the bioluminescence resonance energy transfer (BRET) signal. Using one of these biosensors, pBRET-10, we evaluated the cellular activities of several 3CLpro inhibitors. These inhibitors restored the BRET signal by blocking the proteolysis of pBRET-10, and their relative activities measured using pBRET-10 were consistent with their previously reported anti-SARS-CoV-2 activities. We conclude that the biosensor pBRET-10 is a useful tool for SARS-CoV-2 3CLpro inhibitor discovery. IMPORTANCE The virus proteases 3CLpro are validated drug targets for developing antivirals to treat coronavirus diseases, such as COVID-19. However, the development of 3CLpro inhibitors relies heavily on BSL-3 laboratories. Here, we report a series of BRET-based self-cleaving biosensors that can be used to set up cell-based assays to evaluate the cell permeability and cellular activity of SARS-CoV-2 3CLpro inhibitors in BSL-2 laboratories. The cell-based assay is suitable for high-throughput screening for 3CLpro inhibitors because of the simplicity and good reproducibility of our biosensors. The design strategy can also be used to design biosensors for other viral proteases for which the activation processes involve the self-cleavage of polyproteins.


Subject(s)
Biosensing Techniques , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Biosensing Techniques/methods , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Energy Transfer , Humans , Protease Inhibitors/pharmacology , Reproducibility of Results , SARS-CoV-2
3.
Redox Biol ; 26: 101293, 2019 09.
Article in English | MEDLINE | ID: mdl-31421411

ABSTRACT

Sulfane sulfur species including hydrogen polysulfide and organic persulfide are newly recognized normal cellular components, and they participate in signaling and protect cells from oxidative stress. Their production has been extensively studied, but their removal is less characterized. Herein, we showed that sulfane sulfur at high levels was toxic to Escherichia coli under both anaerobic and aerobic conditions. OxyR, a well-known regulator against H2O2, also sensed sulfane sulfur, as revealed via mutational analysis, constructed gene circuits, and in vitro gene expression. Hydrogen polysulfide modified OxyR at Cys199 to form a persulfide OxyR C199-SSH, and the modified OxyR activated the expression of thioredoxin 2 and glutaredoxin 1. The two enzymes are known to reduce sulfane sulfur to hydrogen sulfide. Bioinformatics analysis indicated that OxyR homologs are widely present in bacteria, including obligate anaerobic bacteria. Thus, the OxyR sensing of sulfane sulfur may represent a preserved mechanism for bacteria to deal with sulfane sulfur stress.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/physiology , Gene Expression Regulation, Bacterial/drug effects , Repressor Proteins/genetics , Sulfur/metabolism , Chromatography, Liquid , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Gene Expression Profiling , Hydrogen Peroxide/metabolism , Hydrogen Sulfide/metabolism , Mutation , Oxidation-Reduction , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Sulfur/pharmacology , Tandem Mass Spectrometry , Thioredoxins/metabolism , Transcriptional Activation
4.
Anal Chem ; 91(6): 3893-3901, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30793598

ABSTRACT

Polysulfides are newly discovered cellular contents, and they are involved in multiple intracellular processes, including redox homeostasis and protein sulfhydration. The dynamic changes of polysulfides inside the cell are directly related to these processes. To monitor the intracellular dynamics and subcellular levels of polysulfides, we developed green-fluorescent-protein (GFP)-based probes that are polysulfide-specific. A pair of cysteine residues was introduced near the GFP chromophore with the spatial distance between the cysteine residues designed to allow the formation of internal -S n- ( n ≥ 3) bonds but not -S2- (disulfide) bonds. We tested these probes in model microorganisms and found that they displayed ratiometric changes to intracellular polysulfides that had clear variations associated with the growth phases. The distribution of polysulfides in subcellular organelles is heterogeneous, suggesting that polysulfides have multiple origins and functions in cells. These probes provided long-desired tools for polysulfide in vivo studies.


Subject(s)
Biosensing Techniques/methods , Green Fluorescent Proteins/metabolism , Organelles/metabolism , Sulfides/metabolism , Escherichia coli/cytology , Green Fluorescent Proteins/chemistry , Models, Molecular , Oxidation-Reduction , Protein Conformation , Saccharomyces cerevisiae/cytology , Time Factors
5.
Biodegradation ; 29(6): 511-524, 2018 12.
Article in English | MEDLINE | ID: mdl-30141069

ABSTRACT

Many industrial activities produce H2S, which is toxic at high levels and odorous at even very low levels. Chemolithotrophic sulfur-oxidizing bacteria are often used in its remediation. Recently, we have reported that many heterotrophic bacteria can use sulfide:quinone oxidoreductase and persulfide dioxygenase to oxidize H2S to thiosulfate and sulfite. These bacteria may also potentially be used in H2S biotreatment. Here we report how various heterotrophic bacteria with these enzymes were cultured with organic compounds and the cells were able to rapidly oxidize H2S to zero-valence sulfur and thiosulfate, causing no apparent acidification. Some also converted the produced thiosulfate to tetrathionate. The rates of sulfide oxidation by some of the tested bacteria in suspension, ranging from 8 to 50 µmol min-1 g-1 of cell dry weight at pH 7.4, sufficient for H2S biotreatment. The immobilized bacteria removed H2S as efficiently as the bacteria in suspension, and the inclusion of Fe3O4 nanoparticles during immobilization resulted in increased efficiency for sulfide removal, in part due to chemical oxidation H2S by Fe3O4. Thus, heterotrophic bacteria may be used for H2S biotreatment under aerobic conditions.


Subject(s)
Bacteria/metabolism , Heterotrophic Processes , Hydrogen Sulfide/metabolism , Sulfides/metabolism , Bacteria/cytology , Bacteria/growth & development , Bacteria/ultrastructure , Biodegradation, Environmental , Cells, Immobilized/metabolism , Hydrogen-Ion Concentration , Oxidation-Reduction , Phylogeny , Tetrathionic Acid/metabolism , Thiosulfates/metabolism
6.
ISME J ; 11(12): 2754-2766, 2017 12.
Article in English | MEDLINE | ID: mdl-28777380

ABSTRACT

Sulfide (H2S, HS- and S2-) oxidation to sulfite and thiosulfate by heterotrophic bacteria, using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO), has recently been reported as a possible detoxification mechanism for sulfide at high levels. Bioinformatic analysis revealed that the sqr and pdo genes were common in sequenced bacterial genomes, implying the sulfide oxidation may have other physiological functions. SQRs have previously been classified into six types. Here we grouped PDOs into three types and showed that some heterotrophic bacteria produced and released H2S from organic sulfur into the headspace during aerobic growth, and others, for example, Pseudomonas aeruginosa PAO1, with sqr and pdo did not release H2S. When the sqr and pdo genes were deleted, the mutants also released H2S. Both sulfide-oxidizing and non-oxidizing heterotrophic bacteria were readily isolated from various environmental samples. The sqr and pdo genes were also common in the published marine metagenomic and metatranscriptomic data, indicating that the genes are present and expressed. Thus, heterotrophic bacteria actively produce and consume sulfide when growing on organic compounds under aerobic conditions. Given their abundance on Earth, their contribution to the sulfur cycle should not be overlooked.


Subject(s)
Bacteria/metabolism , Sulfides/metabolism , Aerobiosis , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Heterotrophic Processes , Oxidation-Reduction , Quinone Reductases/genetics , Quinone Reductases/metabolism , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...