Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
2.
Int Immunopharmacol ; 134: 112237, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744170

ABSTRACT

Regulatory T (Treg) cells are indispensable in maintaining the immune homeostasis and preventing autoimmune diseases. Regulatory T (Treg) cells include thymus derived Treg cells (tTregs) and peripherally induced Treg cells (iTreg), which are differentiated from antigen stimulated CD4+ naïve T cells in presence of TGFß. tTregs are quite stable, and more immune suppressive, while iTreg cells are less stable, and are prone to differentiate into inflammatory T cells. Therefore, identification of small molecules that could promote the differentiation of iTreg cells is an attractive strategy for autoimmune diseases. Inhibition of AKT/mTOR pathway promotes their differentiation. Whether inhibition of Lck/Fyn kinase activity (upstream of AKT/mTOR pathway) can be used to promote the differentiation of iTreg cells has not been determined. Here, we showed that Srci1, a small molecular inhibitor of Lck/Fyn, promoted the differentiation of FOXP3+ iTreg cells. Srci1 treatment resulted in inhibition of phosphorylation of key components of AKT/mTOR pathway, including mTOR, p70 S6K, 4EBP1, and promoted the expression of Foxp3 and its target genes, thereby promoted differentiation of in vitro iTreg cells. Srci1 treated iTreg cells showed more similar gene expression profile to that of tTreg cells. Our results thus suggest that inhibition of Lck/Fyn kinase activity can promote the differentiation of iTreg cells, and may have implication in autoimmune diseases.


Subject(s)
Cell Differentiation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Proto-Oncogene Proteins c-akt , Signal Transduction , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , TOR Serine-Threonine Kinases/metabolism , Cell Differentiation/drug effects , Animals , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mice , Forkhead Transcription Factors/metabolism , Cells, Cultured , Mice, Inbred C57BL , Humans
3.
Br J Dermatol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477474

ABSTRACT

BACKGROUND: Dominant dystrophic epidermolysis bullosa (DDEB) is characterized by trauma-induced blisters and, in some individuals, intense pruritus. Precisely what causes itch in DDEB and optimal ways to reduce it have not been fully determined. OBJECTIVE: To characterize DDEB skin transcriptomes to identify therapeutic targets to reduce pruritus in patients. METHODS: We evaluated affected and unaffected skin biopsy samples from 6 DDEB subjects (all with the very itchy pruriginosa subtype), and 4 healthy individuals using bulk RNA-seq. Single-cell transcriptomes of affected (n=2) and unaffected (n=1) DDEB and healthy skin (n=2) were obtained. Dupilumab treatment was provided for three patients. RESULTS: The skin bulk transcriptome showed significant enrichment of Th1/2 and Th17 pathways in affected DDEB skin compared with non-lesional DDEB and healthy skin. Single-cell transcriptomics showed an association of glycolytically active GATA3+ Th2 cells in affected DDEB skin. Treatment with dupilumab in three people with DDEB led to significantly reduced VAS itch scores after 12 weeks (mean VAS=3.83) compared to pre-treatment (mean VAS=7.83). Bulk RNA-seq and qPCR showed that healthy skin and dupilumab-treated epidermolysis bullosa (EB) pruriginosa skin show very similar transcriptomic profiles, and reduced Th1/2 and Th17 pathway enrichment. CONCLUSIONS: Single-cell RNA-seq helps define an enhanced DDEB-associated Th2 profile and rationalizes drug repurposing of anti-Th2 drugs in treating DDEB pruritus.

6.
J Exp Med ; 221(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38324068

ABSTRACT

TH17 differentiation is critically controlled by "signal 3" of cytokines (IL-6/IL-23) through STAT3. However, cytokines alone induced only a moderate level of STAT3 phosphorylation. Surprisingly, TCR stimulation alone induced STAT3 phosphorylation through Lck/Fyn, and synergistically with IL-6/IL-23 induced robust and optimal STAT3 phosphorylation at Y705. Inhibition of Lck/Fyn kinase activity by Srci1 or disrupting the interaction between Lck/Fyn and STAT3 by disease-causing STAT3 mutations selectively impaired TCR stimulation, but not cytokine-induced STAT3 phosphorylation, which consequently abolished TH17 differentiation and converted them to FOXP3+ Treg cells. Srci1 administration or disrupting the interaction between Lck/Fyn and STAT3 significantly ameliorated TH17 cell-mediated EAE disease. These findings uncover an unexpected deterministic role of TCR signaling in fate determination between TH17 and Treg cells through Lck/Fyn-dependent phosphorylation of STAT3, which can be exploited to develop therapeutics selectively against TH17-related autoimmune diseases. Our study thus provides insight into how TCR signaling could integrate with cytokine signal to direct T cell differentiation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Receptors, Antigen, T-Cell , Th17 Cells , Cell Differentiation , Cytokines , Interleukin-23 , Interleukin-6 , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Phosphorylation , Encephalomyelitis, Autoimmune, Experimental/immunology , Animals
7.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338918

ABSTRACT

Due to prolonged forced positioning, the incidence of intraoperative pressure injuries is high. This study aimed to explore the impact of small-molecule antiplatelet drugs on pressure injuries by locally applying them before an injury occurs. In the first part of this study, water-soluble tracers with different molecular weights were applied to normal and early-stage pressure-injured skin. Through digital cameras, spectrophotometers, and histological observations, the penetration of tracers into the epidermis was clarified. In the second part of this study, a water-soluble antiplatelet drug called Trapidil (molecular weight = 205 Da) was applied to the left side of the back of a rat before, during, and after compression, and the contralateral side served as a non-intervention control group. The differences in pressure injuries between the two groups were observed through a digital camera, an ultraviolet camera, and temperature measurement, and skin circulation and perfusion were assessed via an intravenous injection of Evans Blue. The first part of this study found that water-soluble tracers did not easily penetrate normal skin but could more easily penetrate pressure-damaged skin. The smaller the molecular weight of the tracer, the easier it penetrated the skin. Therefore, in the next step of research, water-soluble drugs with smaller molecular weights should be selected. The second part of this study found that, compared with the control group, the occurrence rates and areas of ulcers were lower, the gray value was higher, and the skin temperature was lower in the Trapidil group (p < 0.05). After the intravenous Evans Blue injection, skin circulation and perfusion in the Trapidil group were found to be better. In conclusion, this study found that the topical skin application of a small-molecule antiplatelet agent may have significant effects against pressure injuries by improving post-decompression ischemia, providing new insights into the prevention and treatment of intraoperative pressure injuries.


Subject(s)
Crush Injuries , Pressure Ulcer , Trapidil , Rats , Animals , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Pressure Ulcer/drug therapy , Trapidil/pharmacology , Evans Blue/pharmacology , Skin , Water/pharmacology
8.
J Wound Ostomy Continence Nurs ; 51(1): 32-38, 2024.
Article in English | MEDLINE | ID: mdl-38215296

ABSTRACT

PURPOSE: The aim of this study was to identify the most meaningful diagnostic indicator for distinguishing blanchable erythema (BE) and stage 1 pressure injury (early PI) in an in vivo (rat) model. DESIGN: A prospective case-control design was used to complete a horizontal and vertical comparison of detection indicators during the process of fading of BE or the deterioration of early PI into ulcer in rat models. MATERIALS AND SETTING: The sample comprised 5 hairless rats with 20 injuries, of which 10 were BE and the other 10 were early PI. Data were collected at Nagano College of Nursing in 2020 in Nagano, Japan. METHODS: The BE and PI rat models were established by subjecting the dorsal skin of a hairless rat to compression between 2 neodymium magnets for 45 minutes and 3.45 hours, respectively. The affected skin was observed based on the following: (1) photography, (2) hardness, (3) temperature, (4) moisture, and (5) spectrophotometric (a* value and ultraviolet [UV] reflectance) measurements. All measurements of BE were performed at the beginning to 60 minutes after decompression, and those for early PI were performed until 48 hours after decompression. RESULTS: Multiple BE factors, such as the degree of erythema (macroscopy and a* value), hardness, temperature, and moisture, were found to have unstable fluctuations. Only UV reflectance gradually decreased from 6 hours and decreased significantly at 48 hours after decompression (P = .001 vs 1 hour). In contrast to early PI, erythema in BE obviously faded within 10 minutes. CONCLUSIONS: Study findings indicate that a continuous decrease in UV reflectance can reflect the worsening of hemorrhage in early (stage 1) PI. In contrast, other indicators including photography, skin hardness, temperature, and moisture fluctuated and did not prove predictive for PI progression. The obvious fading of erythema in BE a short time after decompression can be used for clinical observations.


Subject(s)
Pressure Ulcer , Humans , Animals , Rats , Pressure Ulcer/diagnosis , Risk Factors , Skin , Erythema/diagnosis , Incidence
9.
Cancer Lett ; 584: 216615, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199586

ABSTRACT

The biological role of B7-H1 intrinsic signal is reportedly diverse and controversial, its signal pathway remains unclear. Although B7-H1 blocking antibodies were found to have agonist capacity, their binding features and agonist mechanisms need further investigation. Here, by constructing cell strains with full-length or truncated B7-H1, we found that B7-H1 functioned as a receptor to transmit cell death signal from PD-1 protein or anti-B7-H1s through its cytoplasmic domain. Specific binding to the IgV-like domain of B7-H1 was required for the downstream signal. Upon agonists interaction, B7-H1 regulated the degradation of phosphoinositide 3-kinases (PI3Ks) subunit p110γ, subsequently inhibited the PI3K/AKT/mTOR pathway, and significantly increased autophagy. Moreover, B7-H1 agonists also suppressed ubiquitylation in B7-H1+cells by reducing ubiquitin-activating enzyme (E1), eventually leading to cell death. Finally, we validated the receptor role of B7-H1 in multiple tumor cells and demonstrated that B7-H1 agonists could suppress tumor progression independent of T cells in vivo. Our findings revealed that B7-H1 agonists functions as a PI3K inhibitor and may offer new strategies for PI3K targeting therapy.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , B7-H1 Antigen/metabolism , Cell Death , Class Ib Phosphatidylinositol 3-Kinase , Histamine Agonists , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
10.
Rev. int. med. cienc. act. fis. deporte ; 23(93): 74-86, nov.- dec. 2023. ilus
Article in English | IBECS | ID: ibc-229997

ABSTRACT

Arrhythmias are a prevalent cardiovascular condition, frequently seen in athletes and fitness enthusiasts due to their high-intensity physical activities, which can complicate or be secondary to heart failure, myocardial hypoxia, ischemia, and in severe cases, lead to sudden death. In the context of athletic and fitness-oriented lifestyles, myocardial hypoxia—often a result of intense physical exertion—can significantly impact endoplasmic reticulum stress and mitochondrial autophagy. The endoplasmic reticulum (ER) plays a crucial role in cellular protein synthesis. Disruptions in ER homeostasis, due to various factors including strenuous physical activity, can lead to an accumulation of misfolded proteins in the ER, triggering ER stress. This stress has been identified in various diseases and is of particular interest in the athletic population, where the body's systems, including the heart, are often pushed to their limits. Furthermore, mitochondrial autophagy, a process vital for maintaining cellular health by degrading and recycling mitochondrial components, has been linked to arrhythmia. This connection is especially pertinent in athletes, as their hearts undergo considerable physiological stress and adaptation in response to ongoing physical demands. This study aims to explore the mechanisms by which myocardial hypoxia induces ER stress and mitochondrial autophagy, and how these processes contribute to the development of cardiac arrhythmias in athletes and fitness enthusiasts. By focusing on this specific group, the research seeks to provide a deeper understanding of the cardiac risks associated with high levels of physical activity and to inform preventative and therapeutic strategies tailored to this population (AU)


Subject(s)
Humans , Hypoxia/physiopathology , Endoplasmic Reticulum Stress/physiology , Mitochondria, Heart/physiology , Arrhythmias, Cardiac/physiopathology , Athletes
11.
Aging (Albany NY) ; 15(21): 12551-12569, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37950730

ABSTRACT

With the population aging, age-related sinoatrial node dysfunction (SND) has been on the rise. Sinoatrial node (SAN) degeneration is an important factor for the age-related SND development. However, there is no suitable animal modeling method in this field. Here, we investigated whether D-galactose could induce SAN degeneration and explored the associated mechanism. In vivo, twelve C57BL/6 mice were divided into Control and D-galactose group to receive corresponding treatments. Senescence was confirmed by analyzing the hair and weight; cardiac function was evaluated through echocardiography, cerebral blood flux and serum-BNP; the SAN function was evaluated by electrocardiogram; fibrotic change was evaluated by Masson's trichrome staining and oxidative stress was assessed through DHE staining and serum indicators. Mechanism was verified through immunofluorescence-staining and Western blotting. In vitro, mouse-atrial-myocytes were treated with D-galactose, and edaravone was utilized as the ROS scavenger. Senescence, oxidative stress, proliferation ability and mechanism were verified through various methods, and intuitive evidence was obtained through electrophysiological assay. Finally, we concluded that D-galactose can be used to induce age-related SND, in which oxidative stress plays a key role, causing PITX2 ectopic expression and downregulates SHOX2 expression, then through the downstream GATA4/NKX2-5 axis, results in pacing-related ion channels dysfunction, and hence SND development.


Subject(s)
Galactose , Sinoatrial Node , Mice , Animals , Sinoatrial Node/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Phenotype
12.
Nat Prod Res ; : 1-7, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38013170

ABSTRACT

Three undescribed megastigmane glycosides, mallbarbalosides A-C (1-3) together with 3 known analogues (4-6) were isolated from the stem of Mallotus barbatus. Their structures were elucidated using extensive NMR spectroscopic methods (1D and 2D-NMR spectroscopy) and HRESIMS spectroscopic data analyses. The absolute configurations of the undescribed compounds were determined by the experimental circular dichroism spectroscopy. All the compounds were tested for their inhibitory effects on the production of NO in LPS-treated RAW 264.7 cells, and they showed no inhibitory effect to NO release.

13.
Nat Prod Res ; : 1-8, 2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37867299

ABSTRACT

A new megastigmane glycoside, barbatcoside A (1), and two new phenol glycosides, barbatcosides B (2) and C (3), together with eight known compounds (4-11) were isolated from the bark of Mallotus barbatus Müll. Arg. Their structures were elucidated using extensive 1D and 2D NMR as well as HRESIMS spectroscopic data. The stereochemistry of compounds 1 and 2 were established based on the experimental CD curves. The anti-inflammatory activities of compounds 1-11 from M. barbatus were evaluated using LPS-stimulated RAW 264.7 cell models. Compounds 2 and 3 substantially inhibited the release of NO with IC50 values of 34.78 µM and 20.73 µM, respectively.

14.
Sci Rep ; 13(1): 16998, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813900

ABSTRACT

HCC is one of the most common malignant tumors worldwide. Although traditional treatment methods have been improved in recent years, the survival rate of HCC patients has not been significantly improved. Immunotherapy has shown extremely high clinical value in a variety of tumors. In this study, we found that TUG1 could regulate the expression of PD-L1 through JAK2/STAT3 to mediate immunosuppression. Here, The expression of TUG1 and PD-L1 in HCC tissues was evaluated through analysis of databases and verified in HCC tissue and HCC cancer cells by qRT-PCR. The effect of TUG1 on tumor immune escape was detected by coculture, and cell viability was detected with a CCK8 assay. The results demonstrated that TUG1 was closely associated with anticancer immunity. TUG1 and PD-L1 were highly expressed in HCC tissues and HCC cancer cells, and high expression of TUG1 and PD-L1 was related to the poor prognosis of HCC patients. In addition, knocking down TUG1 expression could reduce PD-L1 expression and enhance the cancer cell-killing capability of T cells. Downregulating TUG1 expression could also decrease the mRNA and protein expression of JAK2 and STAT3. To sum up, TUG1 and PD-L1 are overexpressed in patients with liver cancer and are related to the poor prognosis of these patients. Silencing TUG1 expression reduced the mRNA and protein expression of PD-L1 by affecting the JAK2/STAT3 pathway.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Immune Evasion , RNA, Messenger/therapeutic use , Cell Line, Tumor
15.
mSphere ; 8(5): e0032423, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37750721

ABSTRACT

Increasing evidence suggests that in disease-suppressive soils, microbial volatile compounds (mVCs) released from bacteria may inhibit the growth of plant-pathogenic fungi. However, the antifungal activities and molecular responses of fungi to different mVCs remain largely undescribed. In this study, we first evaluated the responses of pathogenic fungi to treatment with mVCs from Paenarthrobacter ureafaciens. Then, we utilized the well-characterized fungal model organism Saccharomyces cerevisiae to study the potential mechanistic effects of the mVCs. Our data showed that exposure to P. ureafaciens mVCs leads to reduced growth of several pathogenic fungi, and in yeast cells, mVC exposure prompts the accumulation of reactive oxygen species. Further experiments with S. cerevisiae deletion mutants indicated that Slt2/Mpk1 and Hog1 MAPKs play major roles in the yeast response to P. ureafaciens mVCs. Transcriptomic analysis revealed that exposure to mVCs was associated with 1,030 differentially expressed genes (DEGs) in yeast. According to gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses, many of these DEGs are involved in mitochondrial dysfunction, cell integrity, mitophagy, cellular metabolism, and iron uptake. Genes encoding antimicrobial proteins were also significantly altered in the yeast after exposure to mVCs. These findings suggest that oxidative damage and mitochondrial dysfunction are major contributors to the fungal toxicity of mVCs. Furthermore, our data showed that cell wall, antioxidant, and antimicrobial defenses are induced in yeast exposed to mVCs. Thus, our findings expand upon previous research by delineating the transcriptional responses of the fungal model. IMPORTANCE Since the use of bacteria-emitted volatile compounds in phytopathogen control is of considerable interest, it is important to understand the molecular mechanisms by which fungi may adapt to microbial volatile compounds (mVCs). Paenarthrobacter ureafaciens is an isolated bacterium from disease-suppressive soil that belongs to the Actinomycetota phylum. P. ureafaciens mVCs showed a potent antifungal effect on phytopathogens, which may contribute to disease suppression in soil. However, our knowledge about the antifungal mechanism of mVCs is limited. This study has proven that mVCs are toxic to fungi due to oxidative stress and mitochondrial dysfunction. To deal with mVC toxicity, antioxidants and physical defenses are required. Furthermore, iron uptake and CAP proteins are required for antimicrobial defense, which is necessary for fungi to deal with the thread from mVCs. This study provides essential foundational knowledge regarding the molecular responses of fungi to inhibitory mVCs.


Subject(s)
Anti-Infective Agents , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Antifungal Agents/pharmacology , Soil , Fungi , Anti-Infective Agents/pharmacology , Iron
16.
Front Oncol ; 13: 1199426, 2023.
Article in English | MEDLINE | ID: mdl-37538109

ABSTRACT

Purpose: This study aimed to investigate the value of quantified extracellular volume fraction (fECV) derived from dual-energy CT (DECT) for predicting the survival outcomes of patients with hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE). Materials and methods: A total of 63 patients with HCC who underwent DECT before treatment were retrospectively included. Virtual monochromatic images (VMI) (70 keV) and iodine density images (IDI) during the equilibrium phase (EP) were generated. The tumor VMI-fECV and IDI-fECV were measured and calculated on the whole tumor (Whole) and maximum enhancement of the tumor (Maximum), respectively. Univariate and multivariate Cox models were used to evaluate the effects of clinical and imaging predictors on overall survival (OS) and progression-free survival (PFS). Results: The correlation between tumor VMI-fECV and IDI-fECV was strong (both p< 0.001). The Bland-Altman plot between VMI-fECV and IDI-fECV showed a bias of 5.16% for the Whole and 6.89% for the Maximum modalities, respectively. Increasing tumor VMI-fECV and IDI-fECV were positively related to the effects on OS and PFS (both p< 0.05). The tumor IDI-fECV-Maximum was the only congruent independent predictor in patients with HCC after TACE in the multivariate analysis on OS (p = 0.000) and PFS (p = 0.028). Patients with higher IDI-fECV-Maximum values had better survival rates above the optimal cutoff values, which were 35.42% for OS and 29.37% for PFS. Conclusion: The quantified fECV determined by the equilibrium-phase contrast-enhanced DECT can potentially predict the survival outcomes of patients with HCC following TACE treatment.

17.
Neuroradiol J ; : 19714009231196471, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596790

ABSTRACT

PURPOSE: Secondary language areas, including the pre-supplementary motor area (pre-SMA), dorsolateral prefrontal cortex (DLPFC), and the visual word form area (VWFA) play important roles in speech, but have been under-evaluated in the realm of resting-state (rs)-fMRI. The purpose of this study is to determine the incidence that secondary language areas and contralateral language areas can be localized using seed-based correlation (SBC) rs-fMRI. METHODS: We retrospectively reviewed 40 rs-fMRIs for functional connectivity (FC) to secondary language areas in cases where FC to Broca's or Wernicke's area near tumor in the left hemisphere were successfully generated using SBC analysis. Logistical regression was used for statistical analysis. RESULTS: SBC rs-fMRI with a seed in the left Broca's or Wernicke's area ipsilateral to the tumor was performed in the 40 patients. 72.5% of cases showed FC to the left DLPFC, 67.5% to left pre-SMA, and 52.5% of cases had FC to right Broca's area. In addition to other correlations, we found older patients have a lower incidence of FC to the right Wernicke's area when seeded from both left Broca's and left Wernicke's area (p-value = .016, odds ratio = 0.94). CONCLUSION: SBC rs-fMRI can detect left hemispheric secondary language areas as well as right hemispheric primary and secondary language areas. The left DLPFC showed the highest incidence of FC, followed by the left pre-SMA when seeded from both left Broca's and Wernicke's area. Logistics regression also showed in some instances, differences in the incidence of FC to language areas was dependent on age, seed location, and gender.

18.
World J Gastrointest Oncol ; 15(5): 843-858, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37275447

ABSTRACT

BACKGROUND: Intraductal papillary neoplasm of the bile duct (IPNB) is a rare distinct subtype of precursor lesions of biliary carcinoma. IPNB is considered to originate from luminal biliary epithelial cells, typically displays mucin-hypersecretion or a papillary growth pattern, and results in cystic dilatation[1]. IPNB develops anywhere in the intrahepatic and extrahepatic biliary tracts, and can occur in various pathological stages from low-grade dysplasia to invasive carcinoma. IPNBs have similar phenotypic changes in the occurrence and development of all subtypes, and the prognosis is significantly better than that of traditional (non-papillary) cholangiocarcinoma. AIM: To evaluate the clinicopathological features of IPNB to provide evidence-based guidance for treatment. METHODS: Invasive IPNB, invasive intraductal papillary mucinous neoplasm of the pancreas (IPMN), and traditional cholangiocarcinoma data for affected individuals from 1975 to 2016 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Annual percentage changes (APCs) in the incidence and incidence-based (IB) mortality were calculated. We identified the independent predictors of overall survival (OS) and cancer-specific survival (CSS) in individuals with invasive IPNB. RESULTS: The incidence and IB mortality of invasive IPNB showed sustained decreases, with an APC of -4.5% (95%CI: -5.1% to -3.8%) and -3.3% (95%CI: -4.1% to -2.6%) (P < 0.001), respectively. Similar decreases in incidence and IB mortality were seen for invasive IPMN but not for traditional cholangiocarcinoma. Both OS and CSS for invasive IPNB were better than for invasive IPMN and traditional cholangiocarcinoma. A total of 1635 individuals with invasive IPNB were included in our prognosis analysis. The most common tumor sites were the pancreaticobiliary ampulla (47.9%) and perihilar tract (36.7%), but the mucin-related subtype of invasive IPNB was the main type, intrahepatically (approximately 90%). In the univariate and multivariate Cox regression analysis, age, tumor site, grade and stage, subtype, surgery, and chemotherapy were associated with OS and CSS (P < 0.05). CONCLUSION: Incidence and IB mortality of invasive IPNB trended steadily downward. The heterogeneity of IPNB comprises site and the tumor's mucin-producing status.

19.
J Therm Biol ; 115: 103617, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37352595

ABSTRACT

Intraoperatively acquired pressure injuries (IAPIs) occur frequently among patients who undergo surgical procedures that last longer than 3 h. Several studies indicated that heat shock proteins (HSPs) play an important role in the protection of stress-induced damages in skin tissues. Hence, the aim of this study was to investigate the potential preventive effect of thermal preconditioning (TPC) on IAPIs in surgical patients and rats and to identify the differentially expressed HSP genes in response to the above treatment. TPC was performed on one group of hairless rats before the model of pressure injuries was established. Subsequently, the size of skin lesions was measured and the expression levels of mRNA and protein of HSPs of the pressured skin were detected by real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemical staining. For human studies, 118 surgical patients were randomly divided into the TPC group (n = 59) and the control group (n = 59), respectively. The temperature and pressure of sacral skin, as well as the incidence of pressure injury (PI) were detected and compared. In animal studies, TPC significantly reduced both the size and incidence of PI in rats on the second, third and fourth days post treatment. In addition, the expression levels of both mRNA and protein of HSP27 were increased in the TPC group, compared with the control group. Immunohistochemical staining showed that HSP27 was distributed in various types of dermal cells and increased in basal cells. In human studies, a significant reduction (75%) of IAPIs was observed among the patients in the TPC group. TPC can reduce the incidence of PI in rats and humans, and the upregulation of HSP27 may play an important role in this biological progress. Further studies are warranted to explore the molecular mechanism of the preventive effect in PI mediated by HSP27.


Subject(s)
Pressure Ulcer , Rats , Humans , Animals , Pressure Ulcer/prevention & control , HSP27 Heat-Shock Proteins/genetics , HSP27 Heat-Shock Proteins/metabolism , Incidence , RNA, Messenger/genetics , HSP70 Heat-Shock Proteins/genetics
20.
Ther Clin Risk Manag ; 19: 455-473, 2023.
Article in English | MEDLINE | ID: mdl-37337559

ABSTRACT

Dystrophic epidermolysis bullosa (DEB) is one of the major types of EB, a rare hereditary group of trauma-induced blistering skin disorders. DEB is caused by inherited pathogenic variants in the COL7A1 gene, which encodes type VII collagen, the major component of anchoring fibrils which maintain adhesion between the outer epidermis and underlying dermis. DEB can be subclassified into dominant (DDEB) and recessive (RDEB) forms. Generally, DDEB has a milder phenotype, while RDEB patients often have more extensive blistering, chronic inflammation, skin fibrosis, and a propensity for squamous cell carcinoma development, collectively impacting on daily activities and life expectancy. At present, best practice treatments are mostly supportive, and thus there is a considerable burden of disease with unmet therapeutic need. Over the last 20 years, considerable translational research efforts have focused on either trying to cure DEB by direct correction of the COL7A1 gene pathology, or by modifying secondary inflammation to lessen phenotypic severity and improve patient symptoms such as poor wound healing, itch, and pain. In this review, we provide an overview and update on various therapeutic innovations for DEB, including gene therapy, cell-based therapy, protein therapy, and disease-modifying and symptomatic control agents. We outline the progress and challenges for each treatment modality and identify likely prospects for future clinical impact.

SELECTION OF CITATIONS
SEARCH DETAIL
...