Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 2709-2732, 2024.
Article in English | MEDLINE | ID: mdl-38510794

ABSTRACT

Purpose: Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods: MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/ß-Tricalcium phosphate (PCL/ß-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results: Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion: This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.


Subject(s)
Calcium Phosphates , Diabetes Mellitus , Melatonin , Nanocomposites , Humans , Tissue Scaffolds/chemistry , Melatonin/pharmacology , NF-E2-Related Factor 2 , Endothelial Cells , Antioxidants/pharmacology , Vascular Endothelial Growth Factor A/pharmacology , Heme Oxygenase-1 , Angiogenesis Inducing Agents/pharmacology , Angiogenesis , Prospective Studies , Osteogenesis , Signal Transduction , Bone Regeneration
2.
Biomaterials ; 291: 121900, 2022 12.
Article in English | MEDLINE | ID: mdl-36379163

ABSTRACT

Reactive oxygen species (ROS) overproduction and oxidative stress increases bone fragility and fracture risk in long-standing diabetes mellitus cases. In this study, a ROS-reactive drug delivery system was prepared to solve this issue by phenyl sulfide mesoporous silica nanoparticles (PMS) loaded with proanthocyanidin (PC). The effect of PMS/PC on new bone formation under diabetic conditions and the underlying mechanism was investigated in-vitro and in-vivo. The results illustrated that the PC was released from the ROS-reactive PMS/PC triggered by peripheral ROS and then eliminated excessive ROS, which achieved dynamic ROS regulation and reached ROS homeostasis finally. Furthermore, we found PMS/PC promoted osteoblastic differentiation in vitro and increased ossification in vivo by promoting the angiogenesis-osteogenesis coupling via down-regulating the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) to suppress ROS overproduction, preventing vascular oxidative stress. Therefore, our work has proved a therapeutic potential of ROS-reactive PMS/PC in the treatment of diabetic bone disease and indicates excellent prospects of PMS/PC to depress oxidative stress triggered by excessive ROS which is a key pathological factor in many systematic diseases.


Subject(s)
Diabetes Mellitus , Proanthocyanidins , Humans , Reactive Oxygen Species/metabolism , Osteogenesis , Proanthocyanidins/metabolism , Proanthocyanidins/pharmacology , Diabetes Mellitus/metabolism , Oxidative Stress , Neovascularization, Pathologic , Drug Delivery Systems
3.
Int J Biol Macromol ; 222(Pt A): 1175-1191, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36181886

ABSTRACT

Diabetic individuals are frequently associated with increased fracture risk and poor bone healing capacity, and the treatment of diabetic bone defects remains a great challenge in orthopedics. In this study, an antioxidant hydrogel was developed using reduced glutathione grafted gelatine methacrylate (GelMA-g-GSH), followed by 3D printing to form a tissue engineering scaffold, which possessed appropriate mechanical property and good biocompatibility. In vitro studies displayed that benefitting from the sustained delivery of reduced glutathione, GelMA-g-GSH scaffold enabled to suppress the overproduction of reactive oxygen species (ROS) and reduce the oxidative stress of cells. Osteogenic experiments showed that GelMA-g-GSH scaffold exhibited excellent osteogenesis performance, with the elevated expression levels of osteogenesis-related genes and proteins. Further, RNA-sequencing revealed that activation of PI3K/Akt signaling pathway of MC3T3-E1 seeded on GelMA-g-GSH scaffold may be the underlying mechanism in promoting osteogenesis. In vivo, diabetic mice calvarial defects experiment demonstrated enhanced bone regeneration after the implantation of GelMA-g-GSH scaffold, as shown by micro-CT and histological analysis. In summary, 3D-printed GelMA-g-GSH scaffold can not only scavenge ROS, but also promote proliferation and differentiation of osteoblasts by activating PI3K/Akt signaling pathway, thereby accelerating bone repair under diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Gelatin , Mice , Animals , Hydrogels/pharmacology , Methacrylates , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Glutathione , Reactive Oxygen Species , Bone Regeneration , Printing, Three-Dimensional , Tissue Scaffolds , Osteogenesis , Tissue Engineering , Signal Transduction
4.
J Mater Chem B ; 10(21): 4020-4030, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35506736

ABSTRACT

The high failure risk of endosseous titanium implants under diabetes conditions appeals to strengthen the osteointegration on the titanium-bone (Ti-B) interface. Melatonin (MT) is a neurohormone involved in bone homeostasis, which can promote osteogenesis and inhibit ROS overproduction through multiple pathways, but its effects on the Ti-B interface in diabetes remain elusive. The biodegradable poly(lactic-co-glycolic acid) (PLGA) has excellent controlled and sustained release properties, low cytotoxicity, and biocompatibility. Our study fabricated a nanofiber in which MT was encapsulated in PLGA to generate a nanofiber coating on a polydopamine (PDA)-modified titanium surface using electrospinning technology. The surface characteristic showed that MT was fully encapsulated in the PLGA carrier, and PLGA@MT was strongly coupled to the titanium matrix. Furthermore, the PLGA@MT-Ti nanofiber could release MT for at least 30 days. In vitro cellular tests demonstrated that PLGA@MT-Ti directly stimulates osteogenesis on the Ti-B interface by activating the BMP-4/WNT pathway in a dose-dependent manner. The effect of suppressing diabetes-induced ROS overproduction and promoting cell proliferation was not proportional to the content of MT. In vivo experiments revealed that PLGA@MT-Ti screws promoted the bone formation and osteointegration in type 1 diabetes mellitus (T1DM) mice with tibial bone defects. Our findings demonstrate that PLGA@MT-Ti exerted dual effects through activating the BMP-4/WNT pathway and attenuating ROS overproduction to promote osteogenesis and osteointegration at the Ti-B interface, providing a novel strategy to fabricate biomaterial modification and biofunctionalization under diabetic conditions.


Subject(s)
Diabetes Mellitus , Melatonin , Nanofibers , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Melatonin/pharmacology , Mice , Osteogenesis , Reactive Oxygen Species/metabolism , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...