Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Bioresour Technol ; 385: 129449, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37406833

ABSTRACT

Lignocellulosic biomass (LCB) has been recognized as a valuable carbon source for the sustainable production of biofuels and value-added biochemicals. Crude enzymes produced by fungal cell factories benefit economic LCB degradation. However, high enzyme production cost remains a great challenge. Filamentous fungi have been widely used to produce cellulolytic enzymes. Metabolic engineering of fungi contributes to efficient cellulase production for LCB biorefinery. Here the latest progress in utilizing fungal cell factories for cellulase production was summarized, including developing genome engineering tools to improve the efficiency of fungal cell factories, manipulating promoters, and modulating transcription factors. Multi-omics analysis of fungi contributes to identifying novel genetic elements for enhancing cellulase production. Furthermore, the importance of translation regulation of cellulase production are emphasized. Efficient development of fungal cell factories based on integrative strain engineering would benefit the overall bioconversion efficacy of LCB for sustainable bioproduction.


Subject(s)
Cellulase , Cellulase/metabolism , Fungi/metabolism , Lignin/metabolism , Metabolic Engineering , Biomass , Biofuels
2.
Pest Manag Sci ; 79(5): 1963-1976, 2023 May.
Article in English | MEDLINE | ID: mdl-36680499

ABSTRACT

BACKGROUND: A key challenge for unmanned aerial vehicle (UAV) spraying sometimes used in tea plantations is the downwash flow structure there stronger than in crops. In addition, the UAV spray is affected by the relationship between the nozzle design and the pesticide. However, there is little current research on this aspect. As a preliminary step this study focuses on the most appropriate pesticide for a designated nozzle in a six-rotor UAV according to the nozzle-pesticide relationship using a three-dimensional computational fluid dynamics model. This model considers the downwash flow structure effect and nozzle spray performance in hover. Nozzle FVP110-02, widely used in six-rotor UAVs, is used as a representative nozzle and bifenthrin and tea saponin water, commonly used in tea plantations, are used as the pesticides. RESULTS: The downwash flow structure of the six-rotor UAV in hover was conveniently controlled by the flight height and rotational speed, thereby causing the turbulence to be more stable. For nozzle FVP110-02, bifenthrin was more appropriate than tea saponin water at the same concentration, whilst bifenthrin and tea saponin water at a concentration of 1:1000 showed the best performance under identical working conditions. CONCLUSION: The numerical model developed here was shown to be effective for investigating the relationship between nozzle and pesticide. Our findings will help to not only improve UAV spraying for tea cultivation but also provide guidelines for pesticide selection in crops. Further work will address the comparison of the rigorous qualification of the numerical simulations with the measurements by the field test. © 2023 Society of Chemical Industry.


Subject(s)
Pesticides , Pesticides/analysis , Unmanned Aerial Devices , Crops, Agricultural , Tea
3.
Food Chem ; 403: 134377, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36182848

ABSTRACT

This study developed a simple, rapid, stable, and reliable technique for acrylamide (AAm) detection through surface-enhanced Raman scattering (SERS) on an AgNPs substrate with an aggregating agent. Specifically, the agglomeration effects of five types of salt solutions (NaCl, KCl, MgCl2, Na2SO4, and MgSO4) were investigated at different concentrations and optimized using an orthogonal experiment. The optimal amounts of the aggregating agent, analytes, and AgNPs were 4, 4, and 12 µL, respectively. A linear relationship (peak area I1449 = 7.4197x + 5984.8, R2 = 0.9971) between the characteristic peak area and AAm concentration was established in the range of 10 to 500 µg/L, and the LOD was 2.5 µg/L. The recoveries and relative standard deviations in the analysis of potato chips samples were 94.67 %-117.50 % and 8.43 %-12.29 %, respectively. The results of the proposed method were consistent with those obtained by LC-MS/MS method. This study demonstrated that SERS has excellent potential for application in the qualitative and quantitative analyses of AAm in fried foods.


Subject(s)
Acrylamide , Metal Nanoparticles , Acrylamide/analysis , Spectrum Analysis, Raman/methods , Chromatography, Liquid , Tandem Mass Spectrometry , Food Contamination/analysis , Metal Nanoparticles/analysis
4.
Foods ; 13(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201063

ABSTRACT

It is very important to evaluate the immunotoxicity and molecular mechanisms of pesticides. In this study, difenoconazole and chlorothalonil were evaluated for immunotoxicity by using the human Jurkat T-cell line, and the EC50 were 24.66 and 1.17 mg/L, respectively. The joint exposure of difenoconazole and chlorothalonil showed a synergistic effect at low concentrations (lower than 10.58 mg/L) but an antagonistic effect at high concentrations (higher than 10.58 mg/L). With joint exposure at a concentration of EC10, the proportion of late apoptotic cells was 2.26- and 2.91-fold higher than that with exposure to difenoconazole or chlorothalonil alone, respectively. A transcriptomics analysis indicated that the DEGs for single exposure are associated with immunodeficiency disease. Single exposure to chlorothalonil was mainly involved in cation transportation, extracellular matrix organization, and leukocyte cell adhesion. Single exposure to difenoconazole was mainly involved in nervous system development, muscle contraction, and immune system processes. However, when the joint exposure dose was EC10, the DEGs were mainly involved in the formation of cell structures, but the DEGs were mainly involved in cellular processes and metabolism when the joint exposure dose was EC25. The results indicated that the immunotoxicological mechanisms underlying joint exposure to difenoconazole and chlorothalonil are different under low and high doses.

5.
Food Res Int ; 158: 111512, 2022 08.
Article in English | MEDLINE | ID: mdl-35840220

ABSTRACT

Geographic-label is a remarkable feature for Chinese tea products. In this study, the UHPLC-Q/TOF-MS-based metabolomics approach coupled with chemometrics was used to determine the five narrow-geographic origins of Keemun black tea. Thirty-nine differentiated compounds (VIP > 1) were identified, of which eight were quantified. Chemometric analysis revealed that the linear discriminant analysis (LDA) classification accuracy model is 91.7%, with 84.7% cross-validation accuracy. Three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF) and support vector machine (SVM), were introduced to improve the recognition of narrow-geographic origins, the performances of the model were evaluated by confusion matrix, receiver operating characteristic curve (ROC) and area under the curve (AUC). The recognition of RF, SVM and FNN for Keemun black tea from five narrow-geographic origins were 87.5%, 94.44%, and 100%, respectively. Importantly, FNN exhibited an excellent classification effect with 100% accuracy. The results indicate that metabolomics fingerprints coupled with chemometrics can be used to authenticate the narrow-geographic origins of Keemun black teas.


Subject(s)
Camellia sinensis , Tea , Algorithms , Chromatography, High Pressure Liquid , Machine Learning , Metabolomics
6.
Entropy (Basel) ; 24(4)2022 04 05.
Article in English | MEDLINE | ID: mdl-35455175

ABSTRACT

This paper investigates the problem of selecting instrumental variables relative to a target causal influence X→Y from observational data generated by linear non-Gaussian acyclic causal models in the presence of unmeasured confounders. We propose a necessary condition for detecting variables that cannot serve as instrumental variables. Unlike many existing conditions for continuous variables, i.e., that at least two or more valid instrumental variables are present in the system, our condition is designed with a single instrumental variable. We then characterize the graphical implications of our condition in linear non-Gaussian acyclic causal models. Given that the existing graphical criteria for the instrument validity are not directly testable given observational data, we further show whether and how such graphical criteria can be checked by exploiting our condition. Finally, we develop a method to select the set of candidate instrumental variables given observational data. Experimental results on both synthetic and real-world data show the effectiveness of the proposed method.

7.
Ann Palliat Med ; 10(1): 29-36, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33440957

ABSTRACT

BACKGROUND: A new disease-specific prognostic score (Disease-specific Prognostic Score for Patients With Brain Metastases From Small-cell Lung Cancer termed BMS-Score) was published to clarify the prognosis of patients with brain metastasis (BM) of small cell lung cancer (SCLC) treated with whole brain radiotherapy (WBRT). The purpose of the present study was to validate the prognostic value of the newly proposed BMS-Score through comparison with three other previously published prognostic indices. METHODS: In total, 451 patients with BM of SCLC treated with WBRT at the Shanxi Province Cancer Hospital from January 2010 to December 2019 were included. The clinical characteristics of all patients were recorded and follow-up was through April 2020. Overall survival (OS) was calculated by Kaplan-Meier analysis, and univariate and multivariate analyses were used to calculate the prognostic cofactors. The concordance index (C-index) was used to assess the prognostic value of the following four prognostic systems: recursive partitioning analysis (RPA), diagnosis-specific graded prognostic assessment (DS-GPA), basic score for brain metastases (BSBM), and the newly proposed BMS-Score. RESULTS: The independent factors affecting the prognosis of SCLC patients with BM included the Karnofsky performance score (KPS), number of brain metastases, extracranial metastases (ECM) state, and whether treatment had been received before BM. RPA, BSBM, DS-GPA, and BMS-Score log-rank test P values were all less than 0.001 among each group (P<0.001). The C-indices of the four groups were 0.554, 0.584, 0.588, and 0.643, respectively. CONCLUSIONS: The four prognostic scoring systems exhibited medium predictive value for SCLC. The BMS-Score had the best applicability compared with the other three prognosis indices.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Small Cell Lung Carcinoma , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Humans , Lung Neoplasms/radiotherapy , Prognosis , Retrospective Studies , Small Cell Lung Carcinoma/radiotherapy
8.
Plant Physiol Biochem ; 158: 65-75, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33296847

ABSTRACT

Tea plant (Camellia sinensis (L.) O. Kuntze) is known to accumulate high concentrations of fluoride (F) in its leaves; however, the underlying mechanism of F accumulation remains unclear. The main objective of this study was to investigate the homeostatic self-defense mechanisms of tea leaves to F supplementation (0, 5, 20, and 50 mgL-1) by metabolomics and ionomics. We identified a total of 96 up-regulated and 40 down-regulated metabolites in tea leaves treated with F. Of these different compounds, minor polypeptides, carbohydrates and amino acids played valuable roles in the F-tolerating mechanism of tea plant. After F treatments, the concentrations of sodium (Na), ferrum (Fe), manganese (Mn), and molybdenum (Mo) were significantly increased in tea leaves, whereas the aluminum (Al) was decreased. These findings suggest that the ionic balance and metabolites are attributable to the development of F tolerance, providing new insight into tea plant adaptation to F stress.


Subject(s)
Camellia sinensis/metabolism , Fluorides/toxicity , Stress, Physiological , Camellia sinensis/drug effects , Ions , Metabolome , Plant Leaves
9.
J Sci Food Agric ; 101(2): 379-387, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32623727

ABSTRACT

Tea is the one of the most popular non-alcoholic caffeinated beverages in the world. Tea is produced from the tea plant (Camellia sinensis (L.) O. Kuntze), which is known to accumulate fluoride. This article systematically analyzes the literature concerning fluoride absorption, transportation and fluoride tolerance mechanisms in tea plants. Fluoride bioavailability and exposure levels in tea infusions are also reviewed. The circulation of fluoride within the tea plantation ecosystems is in a positive equilibrium, with greater amounts of fluoride introduced to tea orchards than removed. Water extractable fluoride and magnesium chloride (MgCl2 ) extractable fluoride in plantation soil are the main sources of absorption by tea plant root via active trans-membrane transport and anion channels. Most fluoride is readily transported through the xylem as F- /F-Al complexes to leaf cell walls and vacuole. The findings indicate that tea plants employ cell wall accumulation, vacuole compartmentalization, and F-Al complexes to co-detoxify fluoride and aluminum, a possible tolerance mechanism through which tea tolerates higher levels of fluoride than most plants. Furthermore, dietary and endogenous factors influence fluoride bioavailability and should be considered when exposure levels of fluoride in commercially available dried tea leaves are interpreted. The relevant current challenges and future perspectives are also discussed. © 2020 Society of Chemical Industry.


Subject(s)
Camellia sinensis/chemistry , Fluorides/analysis , Fluorides/metabolism , Aluminum/analysis , Aluminum/metabolism , Biological Availability , Biological Transport , Camellia sinensis/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Dietary Exposure/adverse effects , Dietary Exposure/analysis , Humans , Plant Leaves/chemistry , Plant Leaves/metabolism , Risk Assessment , Soil/chemistry , Tea/chemistry
10.
J Sci Food Agric ; 100(1): 168-176, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31471909

ABSTRACT

BACKGROUND: Removing excessive naturally occurring fluoride from tea and/or infusions is difficult because the process has low efficiency and causes secondary pollution. In this study, a novel electrodialysis (ED) technology was developed. We examined the effect of crucial parameters (electrolyte concentration, operation voltage, ED duration and initial concentration of the tea infusion) on defluoridation performance using a highly efficient ion-exchange membrane with five-compartment cells. RESULTS: The most effective ED system results were obtained at an electrolyte concentration of 10 g kg-1 and operating voltage of 20 V. Moreover, the fluoride removal capacity (10.70-66.93%) was highly dependent on the ED duration (1-15 min) and initial concentration of the tea infusion (0.5-10 g kg-1 ). The longer the ED duration and the lower the initial concentration, the higher was the defluoridation performance. During ED, limited loss of the main inclusions (total polyphenols, catechins, caffeine and selected ions) was observed. Furthermore, the D201 anion resin-filled ED stack (0.5-5 g) and improvement of concentrate compartment electrolyte (≥5 times the dilute compartment electrolyte) in the ED system enhanced the defluoridation rate significantly. CONCLUSION: ED is a potentially effective method that can be used for defluoridation in the deep processing of tea products. © 2019 Society of Chemical Industry.


Subject(s)
Dialysis/methods , Fluorides/chemistry , Food Handling/methods , Tea/chemistry , Dialysis/instrumentation , Fluorides/isolation & purification , Food Handling/instrumentation
11.
Front Plant Sci ; 10: 678, 2019.
Article in English | MEDLINE | ID: mdl-31214215

ABSTRACT

Salinity stress from soil or irrigation water can significantly limit the growth and development of plants. Emerging evidence suggests that hydrogen sulfide (H2S), as a versatile signal molecule, can ameliorate salt stress-induced adverse effects. However, the possible physiological mechanism underlying H2S-alleviated salt stress in cucumber remains unclear. Here, a pot experiment was conducted with an aim to examine the possible mechanism of H2S in enhancement of cucumber salt stress tolerance. The results showed that H2S ameliorated salt-induced growth inhibition and alleviated the reduction in photosynthetic attributes, chlorophyll fluorescence and stomatal parameters. Meanwhile H2S increased the endogenous H2S level concomitant with increased activities of D/L-cysteine desulfhydrase and ß-cyanoalanine synthase and decreased activities of O-acetyl-L-serine(thiol)lyase under excess NaCl. Notably, H2S maintained Na+ and K+ homeostasis via regulation of the expression of PM H+-ATPase, SOS1 and SKOR at the transcriptional level under excess NaCl. Moreover, H2S alleviated salt-induced oxidative stress as indicated by lowered lipid peroxidation and reactive oxygen species accumulation through an enhanced antioxidant system. Altogether, these results demonstrated that application of H2S could protect cucumber seedlings against salinity stress, likely by keeping the Na+/K+ balance, controlling the endogenous H2S level by regulating the H2S synthetic and decomposition enzymes, and preventing oxidative stress by enhancing the antioxidant system under salinity stress.

12.
J Sci Food Agric ; 99(5): 2596-2601, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30411367

ABSTRACT

BACKGROUND: Confirmation of food labeling that claims production in a small geographic region is critical to traceability, quality control and brand protection. In the current study, isotope ratio mass spectrometry (IRMS) was used to generate profiles of δ13 C and δ15 N to determine if the stable isotope signatures of Keemun black tea differ within the three counties that claim production. Other factors (cultivar type, leaf maturity and manufacturing process) were considered for their potential effects. RESULTS: Both cultivar type and leaf maturity have remarkable impact on the δ15 N values of tea leaves, and that the cultivar influenced the δ13 C values. Keemun black tea from Qimen county could be easily discriminated from samples from Dongzhi and Guichi counties based on δ15 N signatures. The k-NN model was cross-validated with an accuracy of 91.6%. Environmental factors and/or genotype seem to be the major reasons for δ15 N differences in Keemun black tea from the selected regions. CONCLUSION: This article provides a potential effective method to delineate the geographic point-of-origin of Keemun black tea based on δ15 N signatures. © 2018 Society of Chemical Industry.


Subject(s)
Camellia sinensis/chemistry , Mass Spectrometry/methods , Nitrogen Isotopes/analysis , Tea/chemistry , Carbon Isotopes/analysis , Discriminant Analysis
13.
Phys Chem Chem Phys ; 20(32): 20827-20848, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30066003

ABSTRACT

We examine renewal processes with power-law waiting time distributions (WTDs) and non-zero drift via computing analytically and by computer simulations their ensemble and time averaged spreading characteristics. All possible values of the scaling exponent α are considered for the WTD ψ(t) ∼ 1/t1+α. We treat continuous-time random walks (CTRWs) with 0 < α < 1 for which the mean waiting time diverges, and investigate the behaviour of the process for both ordinary and equilibrium CTRWs for 1 < α < 2 and α > 2. We demonstrate that in the presence of a drift CTRWs with α < 1 are ageing and non-ergodic in the sense of the non-equivalence of their ensemble and time averaged displacement characteristics in the limit of lag times much shorter than the trajectory length. In the sense of the equivalence of ensemble and time averages, CTRW processes with 1 < α < 2 are ergodic for the equilibrium and non-ergodic for the ordinary situation. Lastly, CTRW renewal processes with α > 2-both for the equilibrium and ordinary situation-are always ergodic. For the situations 1 < α < 2 and α > 2 the variance of the diffusion process, however, depends on the initial ensemble. For biased CTRWs with α > 1 we also investigate the behaviour of the ergodicity breaking parameter. In addition, we demonstrate that for biased CTRWs the Einstein relation is valid on the level of the ensemble and time averaged displacements, in the entire range of the WTD exponent α.

14.
J Food Sci ; 83(4): 1165-1172, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29577290

ABSTRACT

Environmental and plant factors (soil condition, variety, season, and maturity) and exposure risks of aluminum (Al), manganese (Mn), lead (Pb), cadmium (Cd), and copper (Cu) in tea leaves were investigated. The concentrations of these metals in tea leaves could not be predicted by their total concentrations in the soil. During any one season, there were differences in Al, Mn, and Cd levels between tea varieties. Seasonally, autumn tea and/or summer tea had far higher levels of Al, Mn, Pb, and Cd than did spring tea. Tea leaf maturity positively correlated with the concentrations of Al, Mn, Pb, and Cd, but negatively with Cu. The calculated average daily intake doses (mg/ [kg•d]) for these metal elements were 0.14 (Al), 0.11 (Mn), 2.70 × 10-3 (Cu), 2.80 × 10-4 (Pb), and 2.88 × 10-6 (Cd). The hazard quotient values of each metal were all significantly lower than risk level (=1), suggesting that, for the general population, consumption of tea does not result in the intake of excessive amounts of Al, Mn, Pb, Cd, or Cu. This study identified the factors that can be monitored in the field to decrease consumer exposure to Al and Mn through tea consumption. PRACTICAL APPLICATION: Environmental and plant factors influence aluminum and heavy metal accumulation in tea leaves. Consumers of tea are not ingesting excessive Al, Mn, Pb, Cd, or Cu. Trackable factors were identified to manage exposure levels.


Subject(s)
Aluminum/analysis , Consumer Product Safety , Environmental Exposure/analysis , Metals, Heavy/analysis , Plant Leaves/chemistry , Tea/chemistry , China , Food Contamination/analysis , Nutrition Policy , Risk Assessment , Risk Factors , Seasons , Soil Pollutants/analysis
15.
Molecules ; 21(2)2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26861265

ABSTRACT

Two new oleanane-type saponins, named oleiferasaponins C4 (1) and C5 (2), were isolated from Camellia oleifera Abel. seed cake residue. Their respective structures were identified as 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxymethylene-olean-12-ene-3ß-O-[ß-d-galacto-pyranosyl-(1→2)]-[ß-d-glucopyranosyl-(1→2)-ß-d-galactopyranosy-(1→3)]-ß-d-glucopyranosid-uronic acid methyl ester (1) and 16α-hydroxy-22α-O-angeloyl-23α-aldehyde-28-dihydroxy-methylene-olean-12-ene-3ß-O-[ß-d-galactopyranosyl-(1→2)]-[ß-d-galactopyranosyl-(1→3)]-ß-d-glucopyranosiduronic acid methyl ester (2) through 1D- and 2D-NMR, HR-ESI-MS, and GC-MS spectroscopic methods. The two compounds exhibited potent cytotoxic activities against five human tumor cell lines (BEL-7402, BGC-823, MCF-7, HL-60 and KB).


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Camellia/chemistry , Oleanolic Acid/analogs & derivatives , Plant Extracts/chemistry , Saponins/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Molecular Conformation , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Saponins/isolation & purification , Saponins/pharmacology
16.
J Food Sci ; 81(1): H235-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26647101

ABSTRACT

The aim of this study was to determine the levels of fluoride in commercial teas and to estimate the contribution of tea consumption to the fluoride recommended daily allowance. A total of 558 tea products in 6 categories, green tea, black tea, oolong tea, pu'er tea, white tea, and reprocessed tea, were collected in the period from 2010 to 2013. The levels of fluoride in infusions of these teas were determined by a fluoride-ion selective electrode. The mean fluoride level in all of the tea samples was 85.16 mg/kg. For each category of tea, the mean fluoride levels were 63.04, 99.74, 52.19, 101.67, 159.78, and 110.54 mg/kg for green tea, black tea, white tea, pu'er tea, oolong tea, and reprocessed tea, respectively. The fluoride content of tea from 4 tea zones in descending order were Southern tea zone (111.39 mg/kg) > Southwest tea zone (78.78 mg/kg) > Jiangnan tea zone (71.73 mg/kg) > Jiangbei tea zone (64.63 mg/kg). These areas produced teas with lower fluoride levels than available foreign-produced tea (161.11 mg/kg). The mean chronic daily intake (CDI) was 0.02 mg/(kg•day) or 1.27 mg/kg. Generally, consuming tea from these 6 categories does not result in the intake of excessive amounts of fluoride for the general population.


Subject(s)
Camellia sinensis/chemistry , Diet , Feeding Behavior , Fluorides/analysis , Tea/chemistry , Fluorides/administration & dosage , Humans
17.
Food Chem ; 155: 98-104, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24594160

ABSTRACT

Albino tea has received increased attention due to its brisk flavour. To identify changes in the key chemical constituents conveying important qualities to albino tea, the metabolite profiles of four albino cultivars and one green tea cultivar were analysed. Compared to the green tea control, significantly decreased contents of chlorophyll (Chl) (p<0.01), total carotenoids (p<0.05), caffeine (p<0.01), and total catechins (p<0.05) were found in albino tea leaves with a few exceptions, whereas increases were noted in the Chl a/b ratio and the contents of both zeaxanthin and free amino acids, including theanine. Multivariate analysis identified catechins and carotenoids as the most important contributors to the metabolic profile variance between the albino and green tea cultivars. High levels of amino acids, along with low levels of chlorophylls, catechins and caffeine, contribute to the qualities of albino tea, which include reduced astringency and bitterness, along with a strong umami taste.


Subject(s)
Camellia sinensis/chemistry , Plant Extracts/analysis , Plant Leaves/chemistry , Amino Acids/analysis , Amino Acids/metabolism , Caffeine/analysis , Caffeine/metabolism , Camellia sinensis/classification , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Catechin/analysis , Catechin/metabolism , Chlorophyll/analysis , Chlorophyll/metabolism , Chlorophyll A , Discriminant Analysis , Humans , Plant Extracts/metabolism , Plant Leaves/classification , Plant Leaves/growth & development , Plant Leaves/metabolism , Quality Control , Taste , Tea/chemistry , Xanthophylls/analysis , Xanthophylls/metabolism , Zeaxanthins
18.
J Agric Food Chem ; 61(51): 12565-71, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24308380

ABSTRACT

Sample preparation using an absorbent for removal of polyphenols and a solid-phase extraction (SPE) cartridge for cleanup followed by high-performance liquid chromatography (HPLC) has been investigated for the simultaneous determination of eight neonicotinoid insecticides (dinotefuran, nitenpyram, thiamethoxam, imidacloprid, clothianidin, imidaclothiz, acetamiprid, and thiacloprid). After tea samples were soaked with water and extracted with acetonitrile, sample extracts were treated with an appropriate amount of polyvinylpolypyrrolidone (PVPP) to effectively remove polyphenols. The treated extract was cleaned up with a Carb-PSA cartridge. Neonicotinoid insecticides were eluted with acetonitrile from the cartridge and dried. The extract was redissolved with methanol/water (1:9, v/v) and analyzed by conventional HPLC coupled with an ultraviolet detector. The recoveries of eight neonicotinoid insecticides in tea samples were 71.4-106.6% at 0.1-1.0 mg kg(-1) spiked levels. Relative standard deviations were <10% for all of the recovery tests. The established method was simple, effective, and accurate and could be used for monitoring neonicotinoid insecticides in tea.


Subject(s)
Camellia sinensis/chemistry , Insecticides/isolation & purification , Pesticide Residues/isolation & purification , Solid Phase Extraction/methods , Tea/chemistry , Chromatography, High Pressure Liquid , Insecticides/analysis , Pesticide Residues/analysis
19.
Article in English | MEDLINE | ID: mdl-23906092

ABSTRACT

The dissipation behaviour of three neonicotinoids - thiamethoxam, imidacloprid and acetamiprid - was compared in tea shoots, in Chinese green and black tea, and after tea infusion in hot water. The simple and rapid analytical procedures for the quantification of these three residues in these matrices were developed using HPLC with ultraviolet (UV) detection. Degradation rates in tea shoots of neonicotinoids applied in either recommended or double dosages followed first-order kinetics, with half-lives of 1.62 or 1.58 days for thiamethoxam, of 2.45 or 2.67 days for imidacloprid, and of 3.24 or 3.85 days for acetamiprid, respectively. Through harvest and processing the residue retentions for thiamethoxam, imidacloprid and acetamiprid were 85.0%, 84.1% and 70.6% of the initial dosages in green tea, and 77.1%, 52.4% and 57.4% in black tea. These three residues all showed high transfer rates through green or black tea brewing of 80.5% or 81.6% for thiamethoxam, of 63.1% or 62.2% for imidacloprid, and of 78.3% or 80.6% for acetamiprid. Waiting periods between the last application and harvest of at least 12, 17 and 20 days were suggested for thiamethoxam, imidacloprid and acetamiprid, respectively, after application at their recommend dosages to ensure levels below a maximum residue limit (MRL) of 0.05 mg kg(-1).


Subject(s)
Food Contamination/analysis , Insecticides/analysis , Tea/chemistry , Camellia sinensis/adverse effects , Camellia sinensis/chemistry , China , Food Handling , Humans , Imidazoles/adverse effects , Imidazoles/analysis , Insecticides/adverse effects , Neonicotinoids , Nitro Compounds/adverse effects , Nitro Compounds/analysis , Oxazines/adverse effects , Oxazines/analysis , Pesticide Residues/adverse effects , Pesticide Residues/analysis , Pyridines/adverse effects , Pyridines/analysis , Tea/adverse effects , Thiamethoxam , Thiazoles/adverse effects , Thiazoles/analysis
20.
Huan Jing Ke Xue ; 34(11): 4440-6, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24455957

ABSTRACT

Pot experiments and the sequential extraction method were conducted to study the chemical form changes of exogenous water solution fluoride in tea garden soil and their contribution to fluoride accumulation of tea plant. The results showed that the background concentration of all chemical forms of fluoride had little changes with time treatment, which was in a relatively stable state. The exogenous water solution fluoride adding to the soils was rapidly transformed to other fractions. Under the 10 mg x kg(-1) fluoride treatment, the concentration of water solution fluoride increased firstly and then decreased with time treatment, the concentration of organic matter fluoride and Fe/Mn oxides fluoride decreased, the concentration of exchangeable fluoride was not different before and after the treatment (P > 0.05), and the concentration of residual fluoride was in a relatively stable state; under the 200 mg x kg(-1) fluoride treatment, the concentration of water solution fluoride, Fe/Mn oxides fluoride and organic matter fluoride decreased with time treatment, the concentration of exchangeable fluoride increased firstly and then decreased, showed no difference before and after the treatment (P > 0.05), and the concentration of residual fluoride increased, with some differences compared with 10 mg x kg(-1) fluoride treatment. The concentration of total fluoride in root, stem and leaf had significant differences under 0-10 mg x kg(-1) fluoride treatment (P < 0.05), while showed no difference from 10 to 100 mg x kg(-1) fluoride treatment (P > 0.05). Step regression analysis suggested the contribution of all chemical forms of fluoride to the concentration of water solution fluoride and total fluoride of root, stem and leaf had some differences, there was a remarkable regression relationship among the content of total fluoride in leaf and water solution fluoride, organic matter fluoride, Fe/Mn oxides fluoride and residual fluoride in soil, however, no significant difference for water solution fluoride of leaf was found.


Subject(s)
Fluorides/analysis , Soil Pollutants/analysis , Soil/chemistry , Biological Availability , Camellia sinensis , Solutions , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...