Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 20(3): 1878-1883, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31492356

ABSTRACT

It is demonstrated that Mg, Cr, Mn and B can be doped close to GaAs surface by plasma doping without external bias at room temperature (RT). The process only takes a few minutes, and impurity densities in the range of 1018-1021/cm3 can be achieved with doping depths about twenty nanometers. The experiment results are analyzed and the physical mechanism is tentatively explained as follows: during the doping process, impurity ion implantation under plasma sheath voltage takes place, simultaneously, plasma stimulates RT diffusion of impurity atom, which plays the main role in the doping process. The enhanced RT diffusion coefficients of Mg, Cr, Mn and B in GaAs are all in the order of magnitude of 10-15 cm2sec-1. This is reported for the first time among all kinds of plasma assisted doping methods.

2.
J Phys Condens Matter ; 29(24): 245702, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28429682

ABSTRACT

Very recently, the NH2CH = NH2PbI3 (FAPbI3) perovskite material has attracted considerable attention in fabricating solar cells (SCs). For a photovoltaic material, its refractive index and extinction coefficient, n(λ) and k(λ), as functions of λ, are important to study its optical properties and to estimate the power conversion efficiency potential for the SCs made of it. As far as we know, to date there has been no reports of n(λ) and k(λ) for FAPbI3 material. In this article, with spectroscopic ellipsometry (SE) measurements, the n(λ) and k(λ), as well as E g = 1.45 eV for FAPbI3, are acquired. The fast deposition crystallization (FDC) procedure combined with the slowed down annealing (SDA) process is applied to fabricate smooth and uniform FAPbI3 film on quartz substrate. Several kinds of organic solvents were tried as the second solvent in the FDC procedure, and it is found that when petroleum ether is used, the smallest surface roughness and good FAPbI3 material purity of the FAPbI3 film can be acquired. The k(λ) results for FAPbI3 obtained by SE, calculated from the n(λ) using the Kramers-Kronig relationship, by absorbance, and by first-principles calculations, are compared. The n(λ) and k(λ) for FAPbI3 are also compared with those for CH3NH3PbI3, GaAs and c-Si.

SELECTION OF CITATIONS
SEARCH DETAIL
...