Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38843787

ABSTRACT

INTRODUCTION: Dimethyl fumarate (DMF) has shown potential for protection in various animal models of neurological diseases. However, the impact of DMF on changes in peripheral immune organs and the central nervous system (CNS) immune cell composition after ischemic stroke remains unclear. METHODS: Eight-week-old C57BL/6J mice with photothrombosis (PT) ischemia and patients with acute ischemic stroke (AIS) were treated with DMF. TTC staining, flow cytometry, and immunofluorescence staining were used to evaluate the infarct volume and changes in immune cells in the periphery and the CNS. RESULTS: DMF reduced the infarct volume on Day 1 after PT. DMF reduced the percentages of peripheral immune cells, such as neutrophils, dendritic cells, macrophages and monocytes, on Day 1, followed by NK cells on Day 3 and B cells on Day 7 after PT. In the CNS, DMF significantly reduced the percentage of monocytes in the brain on Day 3 after PT. In addition, DMF increased the number of microglia in the peri-infarct area and reduced the number of neurons in the peri-infarct area in the acute and subacute phases after PT. In AIS patients, B cells decreased in patients receiving alteplase in combination with DMF. CONCLUSION: DMF can change the immune environment of the periphery and the CNS, reduce infarct volume in the acute phase, promote the recruitment of microglia and preserve neurons in the peri-infarct area after ischemic stroke.

2.
Sci Immunol ; 6(62): eabg9433, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34855456

ABSTRACT

A primary immune response is initiated in secondary lymphoid organs. Virtual memory CD8+ T (TVM) cells are antigen-inexperienced T cells of a central memory phenotype, acquired through self-antigen­driven homeostatic proliferation. Unexpectedly, we find that TVM cells are composed of CCR2+ and CCR2− subsets that differentially elaborate a spectrum of effector- and memory-poised functions directly in the tissue. During a primary influenza infection, TVM cells rapidly infiltrate the lungs in the first day after infection and promote early viral control. TVM cells that recognize viral antigen are retained in the tissue, clonally expand independent of secondary lymphoid organs, and give rise to tissue-resident memory cells. By orchestrating an extralymphoid primary response, heterogenous TVM cells bridge innate reaction and adaptive memory directly in the infected tissue.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytes/immunology , Animals , Cells, Cultured , Immunologic Memory/immunology , Lung/immunology , Mice , Mice, Knockout , Receptors, CCR2/immunology
3.
Immunity ; 49(2): 264-274.e4, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30076099

ABSTRACT

Follicular T helper (Tfh) cells highly express the programmed cell death-1 (PD-1) molecule. Whereas inhibition of T cell receptor (TCR) signaling and CD28 co-stimulation is thought to be the primary mode of PD-1 functions, whether and how PD-1 regulates Tfh cell development and function is unclear. Here we showed that, when engaged by the ensemble of bystander B cells constitutively expressing PD-1 ligand 1 (PD-L1), PD-1 inhibited T cell recruitment into the follicle. This inhibition involved suppression of PI3K activities downstream of the follicle-guidance receptor CXCR5, was independent of co-signaling with the TCR, and necessitated ICOS signaling to overcome. PD-1 further restricted CXCR3 upregulation on Tfh cells, serving to concentrate these cells toward the germinal center territory, where PD-L1-PD-1 interactions between individual Tfh and B cells optimized B cell competition and affinity maturation. Therefore, operating in both costimulation-independent and -dependent manners, PD-1 controls tissue positioning and function of Tfh cells.


Subject(s)
B7-H1 Antigen/metabolism , Germinal Center/cytology , Phosphatidylinositol 3-Kinases/metabolism , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Helper-Inducer/cytology , Animals , B-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Line , Cell Movement/immunology , Female , Germinal Center/immunology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR3/genetics , Receptors, CXCR5/genetics , T-Lymphocytes, Helper-Inducer/immunology
4.
Nat Immunol ; 18(8): 921-930, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28650481

ABSTRACT

Germinal centers (GCs) support high-affinity, long-lived humoral immunity. How memory B cells develop in GCs is not clear. Through the use of a cell-cycle-reporting system, we identified GC-derived memory precursor cells (GC-MP cells) that had quit cycling and reached G0 phase while in the GC, exhibited memory-associated phenotypes with signs of affinity maturation and localized toward the GC border. After being transferred into adoptive hosts, GC-MP cells reconstituted a secondary response like genuine memory B cells. GC-MP cells expressed the interleukin 9 (IL-9) receptor and responded to IL-9. Acute treatment with IL-9 or antibody to IL-9 accelerated or retarded the positioning of GC-MP cells toward the GC edge and exit from the GC, and enhanced or inhibited the development of memory B cells, which required B cell-intrinsic responsiveness to IL-9. Follicular helper T cells (TFH cells) produced IL-9, and deletion of IL-9 from T cells or, more specifically, from GC TFH cells led to impaired memory formation of B cells. Therefore, the GC development of memory B cells is promoted by TFH cell-derived IL-9.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Immunologic Memory/immunology , Interleukin-9/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocyte Subsets/drug effects , B-Lymphocytes/drug effects , Cells, Cultured , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , Immunologic Memory/drug effects , In Vitro Techniques , Interleukin-9/pharmacology , Lymphoid Tissue , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction
5.
Cell Rep ; 19(5): 995-1007, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28467912

ABSTRACT

Follicular T helper (TFH) cells orchestrate the germinal center (GC) response locally. TFH localization in GCs is controlled by chemo-guidance cues and antigen-specific adhesion. Here. we define an antigen-independent, contact-dependent, adhesive guidance system for TFH cells. Unusual for amoeboid cell migration, the system is composed of transmembrane plexin B2 (PlxnB2) molecule, which is highly expressed by GC B cells, and its transmembrane binding partner semaphorin 4C (Sema4C), which is upregulated on TFH cells. Sema4C on TFH cells serves as a receptor to sense the GC-presented PlxnB2 cue and biases TFH migration inwards at the GC edge to promote GC access. The absence of PlxnB2 from the GC or Sema4C from TFH cells causes TFH accumulation along the GC border, impairs T-B cell interactions in the GC, and is associated with defective plasma cell production and affinity maturation. Therefore, Sema4C and PlxnB2 regulate GC TFH recruitment and function and optimize antibody responses.


Subject(s)
Cell Movement , Germinal Center/cytology , Nerve Tissue Proteins/metabolism , Semaphorins/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Animals , B-Lymphocytes/physiology , Cells, Cultured , Germinal Center/metabolism , Mice , T-Lymphocytes, Helper-Inducer/physiology
7.
Nature ; 537(7620): 412-428, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27501245

ABSTRACT

During chronic viral infection, virus-specific CD8(+) T cells become exhausted, exhibit poor effector function and lose memory potential. However, exhausted CD8(+) T cells can still contain viral replication in chronic infections, although the mechanism of this containment is largely unknown. Here we show that a subset of exhausted CD8(+) T cells expressing the chemokine receptor CXCR5 has a critical role in the control of viral replication in mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). These CXCR5(+) CD8(+) T cells were able to migrate into B-cell follicles, expressed lower levels of inhibitory receptors and exhibited more potent cytotoxicity than the CXCR5(-) [corrected] subset. Furthermore, we identified the Id2-E2A signalling axis as an important regulator of the generation of this subset. In patients with HIV, we also identified a virus-specific CXCR5(+) CD8(+) T-cell subset, and its number was inversely correlated with viral load. The CXCR5(+) subset showed greater therapeutic potential than the CXCR5(-) [corrected] subset when adoptively transferred to chronically infected mice, and exhibited synergistic reduction of viral load when combined with anti-PD-L1 treatment. This study defines a unique subset of exhausted CD8(+) T cells that has a pivotal role in the control of viral replication during chronic viral infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Germinal Center/cytology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Receptors, CXCR5/metabolism , Adoptive Transfer , Animals , B-Lymphocytes/immunology , Basic Helix-Loop-Helix Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation , Chronic Disease , Female , Germinal Center/immunology , HIV Infections/immunology , HIV Infections/virology , Humans , Inhibitor of Differentiation Protein 2/metabolism , Lymphocytic choriomeningitis virus/growth & development , Male , Mice , Receptors, CXCR5/deficiency , Signal Transduction , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/transplantation , Viral Load/immunology , Virus Replication/immunology
8.
Nature ; 496(7446): 523-7, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23619696

ABSTRACT

Germinal centres support antibody affinity maturation and memory formation. Follicular T-helper cells promote proliferation and differentiation of antigen-specific B cells inside the follicle. A genetic deficiency in the inducible co-stimulator (ICOS), a classic CD28 family co-stimulatory molecule highly expressed by follicular T-helper cells, causes profound germinal centre defects, leading to the view that ICOS specifically co-stimulates the follicular T-helper cell differentiation program. Here we show that ICOS directly controls follicular recruitment of activated T-helper cells in mice. This effect is independent from ICOS ligand (ICOSL)-mediated co-stimulation provided by antigen-presenting dendritic cells or cognate B cells, and does not rely on Bcl6-mediated programming as an intermediate step. Instead, it requires ICOSL expression by follicular bystander B cells, which do not present cognate antigen to T-helper cells but collectively form an ICOS-engaging field. Dynamic imaging reveals ICOS engagement drives coordinated pseudopod formation and promotes persistent T-cell migration at the border between the T-cell zone and the B-cell follicle in vivo. When follicular bystander B cells cannot express ICOSL, otherwise competent T-helper cells fail to develop into follicular T-helper cells normally, and fail to promote optimal germinal centre responses. These results demonstrate a co-stimulation-independent function of ICOS, uncover a key role for bystander B cells in promoting the development of follicular T-helper cells, and reveal unsuspected sophistication in dynamic T-cell positioning in vivo.


Subject(s)
B-Lymphocytes/immunology , Bystander Effect/immunology , Cell Movement , Germinal Center/cytology , Inducible T-Cell Co-Stimulator Protein/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/metabolism , DNA-Binding Proteins/metabolism , Genotype , Germinal Center/immunology , Inducible T-Cell Co-Stimulator Ligand/metabolism , Lymphocyte Activation , Mice , Proto-Oncogene Proteins c-bcl-6 , Pseudopodia/metabolism , Receptors, CXCR5
SELECTION OF CITATIONS
SEARCH DETAIL
...