Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Nature ; 614(7949): 694-700, 2023 02.
Article in English | MEDLINE | ID: mdl-36755091

ABSTRACT

The ideal electrolyte for the widely used LiNi0.8Mn0.1Co0.1O2 (NMC811)||graphite lithium-ion batteries is expected to have the capability of supporting higher voltages (≥4.5 volts), fast charging (≤15 minutes), charging/discharging over a wide temperature range (±60 degrees Celsius) without lithium plating, and non-flammability1-4. No existing electrolyte simultaneously meets all these requirements and electrolyte design is hindered by the absence of an effective guiding principle that addresses the relationships between battery performance, solvation structure and solid-electrolyte-interphase chemistry5. Here we report and validate an electrolyte design strategy based on a group of soft solvents that strikes a balance between weak Li+-solvent interactions, sufficient salt dissociation and desired electrochemistry to fulfil all the aforementioned requirements. Remarkably, the 4.5-volt NMC811||graphite coin cells with areal capacities of more than 2.5 milliampere hours per square centimetre retain 75 per cent (54 per cent) of their room-temperature capacity when these cells are charged and discharged at -50 degrees Celsius (-60 degrees Celsius) at a C rate of 0.1C, and the NMC811||graphite pouch cells with lean electrolyte (2.5 grams per ampere hour) achieve stable cycling with an average Coulombic efficiency of more than 99.9 per cent at -30 degrees Celsius. The comprehensive analysis further reveals an impedance matching between the NMC811 cathode and the graphite anode owing to the formation of similar lithium-fluoride-rich interphases, thus effectively avoiding lithium plating at low temperatures. This electrolyte design principle can be extended to other alkali-metal-ion batteries operating under extreme conditions.

2.
Angew Chem Int Ed Engl ; 61(49): e202214126, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36196771

ABSTRACT

Solid electrolyte interphase (SEI) formation and H2 O activity reduction in Water-in-Salt electrolytes (WiSE) with an enlarged stability window of 3.0 V have provided the feasibility of the high-energy-density aqueous Li-ion batteries. Here, we extend the cathodic potential of WiSE by rationally controlling intermolecular interaction and interphase chemistry with the introduction of trimethyl phosphate (TMP) into WiSE. The TMP not merely limits the H2 O activity via the strong interaction between TMP and H2 O but also contributes to the formation of reinforced SEI involving phosphate and LiF by manipulating the Li+ solvation structure. Thus, water-tolerance LiMn2 O4 (LMO)||Li4 Ti5 O12 (LTO) full cell with a P/N ratio of 1.14 can be assembled and achieve a long cycling life of 1000 times with high coulombic efficiency of >99.9 %. This work provides a promising insight into the cost-effective practical manufacture of LMO||LTO cells without rigorous moisture-free requirements.

3.
Angew Chem Int Ed Engl ; 61(43): e202210522, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36040840

ABSTRACT

The instability of carbonate electrolyte with metallic Li greatly limits its application in high-voltage Li metal batteries. Here, a "salt-in-salt" strategy is applied to boost the LiNO3 solubility in the carbonate electrolyte with Mg(TFSI)2 carrier, which enables the inorganic-rich solid electrolyte interphase (SEI) for excellent Li metal anode performance and also maintains the cathode stability. In the designed electrolyte, both NO3 - and PF6 - anions participate in the Li+ -solvent complexes, thus promoting the formation of inorganic-rich SEI. Our designed electrolyte has achieved a superior Li CE of 99.7 %, enabling the high-loading NCM811||Li (4.5 mAh cm-2 ) full cell with N/P ratio of 1.92 to achieve 84.6 % capacity retention after 200 cycles. The enhancement of LiNO3 solubility by divalent salts is universal, which will also inspire the electrolyte design for other metal batteries.

4.
Angew Chem Int Ed Engl ; 61(35): e202205967, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35789166

ABSTRACT

LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct ) which dominates low-temperature LIBs performance. Herein, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct , achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8 Mn0.1 Co0.1 O2 ||graphite cells to deliver a capacity of ≈113 mAh g-1 (98 % full-cell capacity) at 25 °C and to remain 82 % of their room-temperature capacity at -20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at -30 °C and 78 % of their capacity at -40 °C and show stable cycling at 50 °C.

5.
Angew Chem Int Ed Engl ; 61(26): e202202731, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35395115

ABSTRACT

The capacity of transition metal oxide cathode for Li-ion batteries can be further enhanced by increasing the charging potential. However, these high voltage cathodes suffer from fast capacity decay because the large volume change of cathode breaks the active materials and cathode-electrolyte interphase (CEI), resulting in electrolyte penetration into broken active materials and continuous side reactions between cathode and electrolytes. Herein, a robust LiF-rich CEI was formed by potentiostatic reduction of fluorinated electrolyte at a low potential of 1.7 V. By taking LiCoO2 as a model cathode, we demonstrate that the LiF-rich CEI maintains the structural integrity and suppresses electrolyte penetration at a high cut-off potential of 4.6 V. The LiCoO2 with LiF-rich CEI exhibited a capacity of 198 mAh g-1 at 0.5C and an enhanced capacity retention of 63.5 % over 400 cycles as compared to the LiF-free LiCoO2 with only 17.4 % of capacity retention.

6.
Nat Commun ; 13(1): 1281, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35277493

ABSTRACT

Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl2 is extracted and stored in the carbon tetrachloride (CCl4) or mineral spirit flow. The immiscibility between the CCl4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl2/Cl- redox reaction.

7.
Adv Mater ; 34(8): e2108353, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34877734

ABSTRACT

Single-crystalline cathode materials have attracted intensive interest in offering greater capacity retention than their polycrystalline counterparts by reducing material surfaces and phase boundaries. However, the single-crystalline LiCoO2 suffers severe structural instability and capacity fading when charged to high voltages (4.6 V) due to Co element dissolution and O loss, crack formation, and subsequent electrolyte penetration. Herein, by forming a robust cathode electrolyte interphase (CEI) in an all-fluorinated electrolyte, reversible planar gliding along the (003) plane in a single-crystalline LiCoO2 cathode is protected due to the prevention of element dissolution and electrolyte penetration. The robust CEI effectively controls the performance fading issue of the single-crystalline cathode at a high operating voltage of 4.6 V, providing new insights for improved electrolyte design of high-energy-density battery cathode materials.

8.
Science ; 374(6564): 172-178, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34618574

ABSTRACT

Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.

9.
Nat Nanotechnol ; 16(8): 902-910, 2021 08.
Article in English | MEDLINE | ID: mdl-33972758

ABSTRACT

Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.

10.
Angew Chem Int Ed Engl ; 60(7): 3661-3671, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33166432

ABSTRACT

In carbonate electrolytes, the organic-inorganic solid electrolyte interphase (SEI) formed on the Li-metal anode surface is strongly bonded to Li and experiences the same volume change as Li, thus it undergoes continuous cracking/reformation during plating/stripping cycles. Here, an inorganic-rich SEI is designed on a Li-metal surface to reduce its bonding energy with Li metal by dissolving 4m concentrated LiNO3 in dimethyl sulfoxide (DMSO) as an additive for a fluoroethylene-carbonate (FEC)-based electrolyte. Due to the aggregate structure of NO3 - ions and their participation in the primary Li+ solvation sheath, abundant Li2 O, Li3 N, and LiNx Oy grains are formed in the resulting SEI, in addition to the uniform LiF distribution from the reduction of PF6 - ions. The weak bonding of the SEI (high interface energy) to Li can effectively promote Li diffusion along the SEI/Li interface and prevent Li dendrite penetration into the SEI. As a result, our designed carbonate electrolyte enables a Li anode to achieve a high Li plating/stripping Coulombic efficiency of 99.55 % (1 mA cm-2 , 1.0 mAh cm-2 ) and the electrolyte also enables a Li||LiNi0.8 Co0.1 Mn0.1 O2 (NMC811) full cell (2.5 mAh cm-2 ) to retain 75 % of its initial capacity after 200 cycles with an outstanding CE of 99.83 %.

11.
Adv Mater ; 32(46): e2002741, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33035375

ABSTRACT

All-solid-state Li metal batteries have attracted extensive attention due to their high safety and high energy density. However, Li dendrite growth in solid-state electrolytes (SSEs) still hinders their application. Current efforts mainly aim to reduce the interfacial resistance, neglecting the intrinsic dendrite-suppression capability of SSEs. Herein, the mechanism for the formation of Li dendrites is investigated, and Li-dendrite-free SSE criteria are reported. To achieve a high dendrite-suppression capability, SSEs should be thermodynamically stable with a high interface energy against Li, and they should have a low electronic conductivity and a high ionic conductivity. A cold-pressed Li3 N-LiF composite is used to validate the Li-dendrite-free design criteria, where the highly ionic conductive Li3 N reduces the Li plating/stripping overpotential, and LiF with high interface energy suppresses dendrites by enhancing the nucleation energy and suppressing the Li penetration into the SSEs. The Li3 N-LiF layer coating on Li3 PS4 SSE achieves a record-high critical current of >6 mA cm-2 even at a high capacity of 6.0 mAh cm-2 . The Coulombic efficiency also reaches a record 99% in 150 cycles. The Li3 N-LiF/Li3 PS4 SSE enables LiCoO2 cathodes to achieve 101.6 mAh g-1 for 50 cycles. The design principle opens a new opportunity to develop high-energy all-solid-state Li metal batteries.

12.
Small ; 16(30): e2000741, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32578349

ABSTRACT

Owing to the advantages of high safety, low cost, high theoretical volumetric capacities, and environmental friendliness, magnesium-ion batteries (MIBs) have more feasibility for large-scale energy storage compared to lithium-ion batteries. However, lack of suitable cathode materials due to sluggish kinetics of magnesium ion is one of the biggest challenges. Herein, water-pillared sodium vanadium bronze nanowires (Na2 V6 O16 ·1.63H2 O) are reported as cathode material for MIBs, which display high performance in magnesium storage. The hydrated sodium ions provide excellent structural stability. The charge shielding effect of lattice water enables fast Mg2+ diffusion. It exhibits high specific capacity of 175 mAh g-1 , long cycle life (450 cycles), and high coulombic efficiency (≈100%). At high current density of 200 mA g-1 , the capacity retention is up to 71% even after 450 cycles (compared to the highest capacity), demonstrating excellent long-term cycling performance. The nature of charge storage kinetics is explored. Furthermore, a highly reversible structure change during the electrochemical process is proved by comprehensive electrochemical analysis. The remarkable electrochemical performance makes Na2 V6 O16 ·1.63H2 O a promising cathode material for low-cost and safe MIBs.

13.
Nat Commun ; 11(1): 2638, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32457300

ABSTRACT

Due to the non-flammable nature of water-based electrolytes, aqueous lithium-ion batteries are resistant to catching fire. However, they are not immune to the risk of explosion, since the sealing structure adopted by current batteries limits the dissipation of heat and pressure within the cells. Here, we report a safe aqueous lithium-ion battery with an open configuration using water-in-salt electrolytes and aluminum oxide coated anodes. The design can inhibit the self-discharge by substantially suppressing the oxygen reduction reaction on lithiated anodes and enable good cycle performance over 1000 times. Our study may open a pathway towards safer lithium-ion battery designs.

14.
Nano Lett ; 20(5): 3880-3888, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32319781

ABSTRACT

High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.

15.
J Am Chem Soc ; 142(5): 2438-2447, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31927894

ABSTRACT

Engineering a stable solid electrolyte interphase (SEI) is critical for suppression of lithium dendrites. However, the formation of a desired SEI by formulating electrolyte composition is very difficult due to complex electrochemical reduction reactions. Here, instead of trial-and-error of electrolyte composition, we design a Li-11 wt % Sr alloy anode to form a SrF2-rich SEI in fluorinated electrolytes. Density functional theory (DFT) calculation and experimental characterization demonstrate that a SrF2-rich SEI has a large interfacial energy with Li metal and a high mechanical strength, which can effectively suppress the Li dendrite growth by simultaneously promoting the lateral growth of deposited Li metal and the SEI stability. The Li-Sr/Cu cells in 2 M LiFSI-DME show an outstanding Li plating/stripping Coulombic efficiency of 99.42% at 1 mA cm-2 with a capacity of 1 mAh cm-2 and 98.95% at 3 mA cm-2 with a capacity of 2 mAh cm-2, respectively. The symmetric Li-Sr/Li-Sr cells also achieve a stable electrochemical performance of 180 cycles at an extremely high current density of 30 mA cm-2 with a capacity of 1 mAh cm-2. When paired with LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes, Li-Sr/LFP cells in 2 M LiFSI-DME electrolytes and Li-Sr/NMC811 cells in 1 M LiPF6 in FEC:FEMC:HFE electrolytes also maintain excellent capacity retention. Designing SEIs by regulating Li-metal anode composition opens up a new and rational avenue to suppress Li dendrites.

16.
Angew Chem Int Ed Engl ; 58(49): 17820-17826, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31571354

ABSTRACT

The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1 , corresponding to the energy density of 440 Wh kg-1 , and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.

17.
Nano Lett ; 19(9): 6665-6672, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31433196

ABSTRACT

Because of its high theoretical volumetric capacity and dendrite-free stripping/plating of Mg, rechargeable magnesium batteries (RMBs) hold great promise for high energy density in consumer electronics. However, the lack of high-energy-density cathodes severely constrains their practical applications. Herein, for the first time, we report that a CuS cathode can fully reversibly work through a displacement reaction in CuS/Mg pouch cells at room temperature and provide a high capacity of ∼400 mA h/g in a MACC electrolyte, corresponding to the gravimetric and volumetric energy density of 608 W h/kg and1042 W h/L, respectively. Even after 80 cycles, CuS/Mg pouch cells can maintain a high capacity of 335 mA h/g. Detailed mechanistic studies reveal that CuS undergoes a displacement reaction route rather than a typical conversion mechanism. This work will provide a guide for more discovery of high-performance cathode candidates for RMBs.

18.
Nature ; 570(7762): E65, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31164722

ABSTRACT

In Fig. 3e of this Letter, the labels "Br-Cl1" and "Br-Cl2" should read "Br-Br1" and "Br-Br2", respectively. In the Methods section 'Preparation of electrodes', the phrase "anhydrous LiBr/LiCl was replaced by LiBr·H2O (99.95%; Sigma-Aldrich) and LiCl (99.95%; Sigma-Aldrich)" should read "anhydrous LiBr/LiCl was replaced by LiBr·H2O (99.95%; Sigma-Aldrich) and LiCl·H2O (99.95%; Sigma-Aldrich)". These errors have been corrected online.

19.
Nature ; 569(7755): 245-250, 2019 05.
Article in English | MEDLINE | ID: mdl-31068723

ABSTRACT

The use of 'water-in-salt' electrolytes has considerably expanded the electrochemical window of aqueous lithium-ion batteries to 3 to 4 volts, making it possible to couple high-voltage cathodes with low-potential graphite anodes1-4. However, the limited lithium intercalation capacities (less than 200 milliampere-hours per gram) of typical transition-metal-oxide cathodes5,6 preclude higher energy densities. Partial7,8 or exclusive9 anionic redox reactions may achieve higher capacity, but at the expense of reversibility. Here we report a halogen conversion-intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 milliampere-hours per gram (for the total weight of the electrode) at an average potential of 4.2 volts versus Li/Li+. Experimental characterization and modelling attribute this high specific capacity to a densely packed stage-I graphite intercalation compound, C3.5[Br0.5Cl0.5], which can form reversibly in water-in-bisalt electrolyte. By coupling this cathode with a passivated graphite anode, we create a 4-volt-class aqueous Li-ion full cell with an energy density of 460 watt-hours per kilogram of total composite electrode and about 100 per cent Coulombic efficiency. This anion conversion-intercalation mechanism combines the high energy densities of the conversion reactions, the excellent reversibility of the intercalation mechanism and the improved safety of aqueous batteries.

20.
Nat Nanotechnol ; 13(12): 1191, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30287944

ABSTRACT

In the version of this Article originally published, in the first paragraph of the Methods, HFE was incorrectly given as 2,2,2-Trifluoroethyl-3',3',3',2',2'-pentafluoropropyl ether; it should have been 1,1,2,2-tetrafluoroethyl-2',2',2'-trifluoroethyl ether. This has now been corrected in the online versions of the Article.

SELECTION OF CITATIONS
SEARCH DETAIL
...