Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ultrasound Med Biol ; 48(11): 2267-2275, 2022 11.
Article in English | MEDLINE | ID: mdl-36055860

ABSTRACT

The aim of the work described here was to develop an ultrasound (US) image-based deep learning model to reduce the rate of malignancy among breast lesions diagnosed as category 4A of the Breast Imaging-Reporting and Data System (BI-RADS) during the pre-operative US examination. A total of 479 breast lesions diagnosed as BI-RADS 4A in pre-operative US examination were enrolled. There were 362 benign lesions and 117 malignant lesions confirmed by postoperative pathology with a malignancy rate of 24.4%. US images were collected from the database server. They were then randomly divided into training and testing cohorts at a ratio of 4:1. To correctly classify malignant and benign tumors diagnosed as BI-RADS 4A in US, four deep learning models, including MobileNet, DenseNet121, Xception and Inception V3, were developed. The performance of deep learning models was compared using the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Meanwhile, the robustness of the models was evaluated by five-fold cross-validation. Among the four models, the MobileNet model turned to be the optimal model with the best performance in classifying benign and malignant lesions among BI-RADS 4A breast lesions. The AUROC, accuracy, sensitivity, specificity, PPV and NPV of the optimal model in the testing cohort were 0.897, 0.913, 0.926, 0.899, 0.958 and 0.784, respectively. About 14.4% of patients were expected to be upgraded to BI-RADS 4B in US with the assistance of the MobileNet model. The deep learning model MobileNet can help to reduce the rate of malignancy among BI-RADS 4A breast lesions in pre-operative US examinations, which is valuable to clinicians in tailoring treatment for suspicious breast lesions identified on US.


Subject(s)
Breast Neoplasms , Deep Learning , Breast Neoplasms/diagnostic imaging , Female , Humans , ROC Curve , Retrospective Studies , Ultrasonography , Ultrasonography, Mammary/methods
2.
Front Oncol ; 12: 862297, 2022.
Article in English | MEDLINE | ID: mdl-35720017

ABSTRACT

Background: First-line surveillance on hepatitis B virus (HBV)-infected populations with B-mode ultrasound is relatively limited to identifying hepatocellular carcinoma (HCC) without elevated α-fetoprotein (AFP). To improve the present HCC surveillance strategy, the state of the art of artificial intelligence (AI), a deep learning (DL) approach, is proposed to assist in the diagnosis of a focal liver lesion (FLL) in HBV-infected liver background. Methods: Our proposed deep learning model was based on B-mode ultrasound images of surgery that proved 209 HCC and 198 focal nodular hyperplasia (FNH) cases with 413 lesions. The model cohort and test cohort were set at a ratio of 3:1, in which the test cohort was composed of AFP-negative HBV-infected cases. Four additional deep learning models (MobileNet, Resnet50, DenseNet121, and InceptionV3) were also constructed as comparative baselines. To evaluate the models in terms of diagnostic power, sensitivity, specificity, accuracy, confusion matrix, F1-score, and area under the receiver operating characteristic curve (AUC) were calculated in the test cohort. Results: The AUC of our model, Xception, achieved 93.68% in the test cohort, superior to other baselines (89.06%, 85.67%, 83.94%, and 78.13% respectively for MobileNet, Resnet50, DenseNet121, and InceptionV3). In terms of diagnostic power, our model showed sensitivity, specificity, accuracy, and F1-score of 96.08%, 76.92%, 86.41%, and 87.50%, respectively, and PPV, NPV, FPR, and FNR calculated from the confusion matrix were respectively 80.33%, 95.24%, 23.08%, and 3.92% in identifying AFP-negative HCC from HBV-infected FLL cases. Satisfactory robustness of our proposed model was shown based on 5-fold cross-validation performed among the models above. Conclusions: Our DL approach has great potential to assist B-mode ultrasound in identifying AFP-negative HCC from FLL found in surveillance of HBV-infected patients.

SELECTION OF CITATIONS
SEARCH DETAIL