Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Hortic Res ; 10(6): uhad077, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37323229

ABSTRACT

Photosynthesis is involved in the essential process of transforming light energy into chemical energy. Although the interaction between photosynthesis and the circadian clock has been confirmed, the mechanism of how light intensity affects photosynthesis through the circadian clock remains unclear. Here, we propose a first computational model for circadian-clock-controlled photosynthesis, which consists of the light-sensitive protein P, the core oscillator, photosynthetic genes, and parameters involved in the process of photosynthesis. The model parameters were determined by minimizing the cost function ( [Formula: see text]), which is defined by the errors of expression levels, periods, and phases of the clock genes (CCA1, PRR9, TOC1, ELF4, GI, and RVE8). The model recapitulates the expression pattern of the core oscillator under moderate light intensity (100 µmol m -2 s-1). Further simulation validated the dynamic behaviors of the circadian clock and photosynthetic outputs under low (62.5 µmol m-2 s-1) and normal (187.5 µmol m-2 s-1) intensities. When exposed to low light intensity, the peak times of clock and photosynthetic genes were shifted backward by 1-2 hours, the period was elongated by approximately the same length, and the photosynthetic parameters attained low values and showed delayed peak times, which confirmed our model predictions. Our study reveals a potential mechanism underlying the circadian regulation of photosynthesis by the clock under different light intensities in tomato.

2.
Hortic Res ; 7(1): 212, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33372175

ABSTRACT

Non-heading Chinese cabbage (NHCC) is an important leafy vegetable cultivated worldwide. Here, we report the first high-quality, chromosome-level genome of NHCC001 based on PacBio, Hi-C, and Illumina sequencing data. The assembled NHCC001 genome is 405.33 Mb in size with a contig N50 of 2.83 Mb and a scaffold N50 of 38.13 Mb. Approximately 53% of the assembled genome is composed of repetitive sequences, among which long terminal repeats (LTRs, 20.42% of the genome) are the most abundant. Using Hi-C data, 97.9% (396.83 Mb) of the sequences were assigned to 10 pseudochromosomes. Genome assessment showed that this B. rapa NHCC001 genome assembly is of better quality than other currently available B. rapa assemblies and that it contains 48,158 protein-coding genes, 99.56% of which are annotated in at least one functional database. Comparative genomic analysis confirmed that B. rapa NHCC001 underwent a whole-genome triplication (WGT) event shared with other Brassica species that occurred after the WGD events shared with Arabidopsis. Genes related to ascorbic acid metabolism showed little variation among the three B. rapa subspecies. The numbers of genes involved in glucosinolate biosynthesis and catabolism were higher in NHCC001 than in Chiifu and Z1, due primarily to tandem duplication. The newly assembled genome will provide an important resource for research on B. rapa, especially B. rapa ssp. chinensis.

3.
Crit Rev Biotechnol ; 40(6): 750-776, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32522044

ABSTRACT

In the whole life process, many factors including external and internal factors affect plant growth and development. The morphogenesis, growth, and development of plants are controlled by genetic elements and are influenced by environmental stress. Transcription factors contain one or more specific DNA-binding domains, which are essential in the whole life cycle of higher plants. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) transcription factors are a large group of factors that are mainly found in plants. The transcription factors of this family serve as important regulators in many biological and physiological processes, such as plant morphogenesis, responsive mechanisms to various stresses, hormone signal transduction, and metabolite regulation. In this review, we summarized the advances in identification, classification, function, regulatory mechanisms, and the evolution of AP2/ERF transcription factors in plants. AP2/ERF family factors are mainly classified into four major subfamilies: DREB (Dehydration Responsive Element-Binding), ERF (Ethylene-Responsive-Element-Binding protein), AP2 (APETALA2) and RAV (Related to ABI3/VP), and Soloists (few unclassified factors). The review summarized the reports about multiple regulatory functions of AP2/ERF transcription factors in plants. In addition to growth regulation and stress responses, the regulatory functions of AP2/ERF in plant metabolite biosynthesis have been described. We also discussed the roles of AP2/ERF transcription factors in different phytohormone-mediated signaling pathways in plants. Genomic-wide analysis indicated that AP2/ERF transcription factors were highly conserved during plant evolution. Some public databases containing the information of AP2/ERF have been introduced. The studies of AP2/ERF factors will provide important bases for plant regulatory mechanisms and molecular breeding.


Subject(s)
DNA-Binding Proteins , Plant Proteins , Plants , Transcription Factor AP-2 , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Physiological Phenomena/genetics , Plants/genetics , Plants/metabolism
4.
Hortic Res ; 7: 9, 2020.
Article in English | MEDLINE | ID: mdl-31934340

ABSTRACT

Celery (Apium graveolens L.) is a vegetable crop in the Apiaceae family that is widely cultivated and consumed because it contains necessary nutrients and multiple biologically active ingredients, such as apigenin and terpenoids. Here, we report the genome sequence of celery based on the use of HiSeq 2000 sequencing technology to obtain 600.8 Gb of data, achieving ~189-fold genome coverage, from 68 sequencing libraries with different insert sizes ranging from 180 bp to 10 kb in length. The assembled genome has a total sequence length of 2.21 Gb and consists of 34,277 predicted genes. Repetitive DNA sequences represent 68.88% of the genome sequences, and LTR retrotransposons are the main components of the repetitive sequences. Evolutionary analysis showed that a recent whole-genome duplication event may have occurred in celery, which could have contributed to its large genome size. The genome sequence of celery allowed us to identify agronomically important genes involved in disease resistance, flavonoid biosynthesis, terpenoid metabolism, and other important cellular processes. The comparative analysis of apigenin biosynthesis genes among species might explain the high apigenin content of celery. The whole-genome sequences of celery have been deposited at CeleryDB (http://apiaceae.njau.edu.cn/celerydb). The availability of the celery genome data advances our knowledge of the genetic evolution of celery and will contribute to further biological research and breeding in celery as well as other Apiaceae plants.

5.
Hortic Res ; 6: 69, 2019.
Article in English | MEDLINE | ID: mdl-31231527

ABSTRACT

Carrots (Daucus carota L.), among the most important root vegetables in the Apiaceae family, are cultivated worldwide. The storage root is widely utilized due to its richness in carotenoids, anthocyanins, dietary fiber, vitamins and other nutrients. Carrot extracts, which serve as sources of antioxidants, have important functions in preventing many diseases. The biosynthesis, metabolism, and medicinal properties of carotenoids in carrots have been widely studied. Research on hormone regulation in the growth and development of carrots has also been widely performed. Recently, with the development of high-throughput sequencing technology, many efficient tools have been adopted in carrot research. A large amount of sequence data has been produced and applied to improve carrot breeding. A genome editing system based on CRISPR/Cas9 was also constructed for carrot research. In this review, we will briefly summarize the origins, genetic breeding, resistance breeding, genome editing, omics research, hormone regulation, and nutritional composition of carrots. Perspectives about future research work on carrots are also briefly provided.

6.
Plant Sci ; 280: 110-119, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30823988

ABSTRACT

The Brassica rapa (B. rapa) species displays enormous phenotypic diversity, with leafy vegetables, storage root vegetables and oil crops. These different crops all have different flowering time, which determine their growing season and cultivation area. Little is known about the effects of diverse temperature and day-lengths on flowering time QTL associated with FLC paralogues. We phenotyped the flowering time of a doubled haploid population, established from a cross between Yellow sarson and Pak choi under diverse environmental conditions. We identified flowering-time QTL (fQTL) in different photoperiod and temperature regimes in the greenhouse, and studied their colocation with known flowering time genes. As several fQTL colocalized with FLC paralogues, we studied the expression patterns of four FLC paralogues during the course of vernalization in parental lines. Under all environmental conditions tested the major fQTL that mapped to the BrFLC2_A02 locus was detected, however its effect decreased when plants were grown at low temperatures. Another fQTL that mapped to the FLC paralogue, BrFLC5_A03 was also identified under all tested environments, while no fQTL colocated with BrFLC1_A10 or BrFLC3_A03. Furthermore, the vernalization treatment decreased expression of all BrFLC paralogues in the parental lines, and showed the lowest transcript level after 28 days of vernalization. Transcript abundance stayed low after returning the plants for seven days to normal growth temperature. Interestingly, transcript abundance of BrFLC3_A03 and BrFLC5_A03 was repressed much stronger and already reached lowest levels after 14d in the early-flowering type YS-143. This study improves understanding of the effects of daylength and vernalization on flowering time in B. rapa and the role of the different BrFLC paralogues therein.


Subject(s)
Brassica rapa/metabolism , Brassica rapa/physiology , Flowers/metabolism , Flowers/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Photoperiod , Quantitative Trait Loci/genetics , Temperature
7.
Database (Oxford) ; 20182018 01 01.
Article in English | MEDLINE | ID: mdl-29992323

ABSTRACT

Celery (Apium graveolens L.) is a plant belonging to the Apiaceae family, and a popular vegetable worldwide because of its abundant nutrients and various medical functions. Although extensive genetic and molecular biological studies have been conducted on celery, its genomic data remain unclear. Given the significance of celery and the growing demand for its genomic data, the whole genome of 'Q2-JN11' celery (a highly inbred line obtained by artificial selfing of 'Jinnan Shiqin') was sequenced using HiSeq 2000 sequencing technology. For the convenience of researchers to study celery, an online database of the whole-genome sequences of celery, CeleryDB, was constructed. The sequences of the whole genome, nucleotide sequences of the predicted genes and amino acid sequences of the predicted proteins are available online on CeleryDB. Home, BLAST, Genome Browser, Transcription Factor and Download interfaces composed of the organizational structure of CeleryDB. Users can search the celery genomic data by using two user-friendly query tools: basic local alignment search tool and Genome Browser. In the future, CeleryDB will be constantly updated to satisfy the needs of celery researchers worldwide.Database URL: http://apiaceae.njau.edu.cn/celerydb.


Subject(s)
Apium/genetics , Databases, Genetic , Genome, Plant , Allergens/genetics , Genes, Plant , Plant Proteins/genetics , Sequence Alignment , Transcription Factors/metabolism , User-Computer Interface
8.
Mol Genet Genomics ; 293(4): 861-871, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29497811

ABSTRACT

Carrot (Daucus carota L.) is one of the most economically important root vegetables in the world, providing numerous nutrients for human health. China is the largest country of carrot production in the world, and 'Kurodagosun' has been a major carrot variety in China. Carrot material used in this study was the inbred line 'DC-27', which was derived by forced selfing from 'Kurodagosun'. To understand the genetic system and plant-specific genes of 'Kurodagosun', we report the draft genome sequence of carrot 'DC-27' assembled using a combination of Roche454 and HiSeq 2000 sequencing technologies to achieve 32-fold genome coverage. A total of 31,891 predicted genes were identified. These assembled sequences provide candidate genes involved in biological processes including stress response and carotenoid biosynthesis. Genomic sequences corresponding to 371.6 Mb was less than 473 Mb, which is the estimated genome size. The availability of a draft sequence of the 'DC-27' genome advances knowledge on the biological research and breeding of carrot, as well as other Apiaceae plants. The 'DC-27' genome sequence data also provide a new resource to explore the evolution of other higher plants.


Subject(s)
Daucus carota/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing , Plant Breeding , Carotenoids/biosynthesis , Carotenoids/genetics , China , Daucus carota/metabolism , Japan , Stress, Physiological/genetics
9.
Crit Rev Biotechnol ; 38(2): 172-183, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28423952

ABSTRACT

Celery (Apium graveolens L.), one of the most important vegetables in Apiaceae family, is cultivated worldwide and utilized in food and cosmetic industries because it is an excellent source of vitamins, phenolic compounds, volatile oils and other nutrients. Celery extracts possess various medicinal properties, such as antibacterial, anti-inflammatory and lowering blood glucose and serum lipid levels. With the rapid advancements in molecular biology and sequencing technology, studies on celery have been performed. Numerous molecular markers and regulatory genes have been discovered and applied to improve celery. Research advances, including genetic breeding, genomics research, function genes and chemical composition, regarding celery are reviewed in this paper. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on celery, an important Apiaceae vegetable crop.


Subject(s)
Apium , Vegetables , Apium/chemistry , Apium/genetics , Genes, Plant , Genomics , Phytochemicals , Plant Breeding , Research , Vegetables/chemistry , Vegetables/genetics
10.
Sci Rep ; 7: 42229, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169368

ABSTRACT

Auxin resistant 1/like aux1 (AUX/LAX), pin-formed (PIN) and ATP binding cassette subfamily B (ABCB/MDR/PGP) are three families of auxin transport genes. The development-related functions of the influx and efflux carriers have been well studied and characterized in model plants. However, there is scant information regarding the functions of auxin genes in Chinese cabbage and the responses of exogenous polar auxin transport inhibitors (PATIs). We conducted a whole-genome annotation and a bioinformatics analysis of BrAUX/LAX, BrPIN, and BrPGP genes in Chinese cabbage. By analyzing the expression patterns at several developmental stages in the formation of heading leaves, we found that most auxin-associate genes were expressed throughout the entire process of leafy head formation, suggesting that these genes played important roles in the development of heads. UPLC was used to detect the distinct and uneven distribution of auxin in various segments of the leafy head and in response to PATI treatment, indicated that the formation of the leafy head depends on polar auxin transport and the uneven distribution of auxin in leaves. This study provides new insight into auxin polar transporters and the possible roles of the BrLAX, BrPIN and BrPGP genes in leafy head formation in Chinese cabbage.


Subject(s)
Brassica/genetics , Genes, Plant , Indoleacetic Acids/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/growth & development , Plant Leaves/genetics , Biological Transport/genetics , Chromosomes, Plant/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Nucleotide Motifs/genetics , Organ Specificity/genetics , Phthalimides/pharmacology , Phylogeny , Plant Leaves/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Triiodobenzoic Acids/pharmacology
11.
Hortic Res ; 3: 16034, 2016.
Article in English | MEDLINE | ID: mdl-27602230

ABSTRACT

Non-heading Chinese cabbage (Brassica rapa ssp. chinensis) is one of the main green leafy vegetables in the world, especially in China, with significant economic value. Hyaloperonospora parasitica is a fungal pathogen responsible for causing downy mildew disease in Chinese cabbage, which greatly affects its production. The objective of this study was to identify transcriptionally regulated genes during incompatible interactions between non-heading Chinese cabbage and H. parasitica using complementary DNA-amplified fragment length polymorphism (cDNA-AFLP). We obtained 129 reliable differential transcript-derived fragments (TDFs) in a resistant line 'Suzhou Qing'. Among them, 121 upregulated TDFs displayed an expression peak at 24-48 h post inoculation (h.p.i.). Fifteen genes were further selected for validation of cDNA-AFLP expression patterns using quantitative reverse transcription PCR. Results confirmed the altered expression patterns of 13 genes (86.7%) revealed by the cDNA-AFLP. We identified four TDFs related to fungal resistance among the 15 TDFs. Furthermore, comparative analysis of four TDFs between resistant line 'Suzhou Qing' and susceptible line 'Aijiao Huang' showed that transcript levels of TDF14 (BcLIK1_A01) peaked at 48 h.p.i. and 25.1-fold increased in the resistant line compared with the susceptible line. Similarly, transcript levels of the other three genes, TDF42 (BcCAT3_A07), TDF75 (BcAAE3_A06) and TDF88 (BcAMT2_A05) peaked at 24, 48 and 24 h.p.i. with 25.1-, 100- and 15.8-fold increases, respectively. The results suggested that the resistance genes tended to transcribe at higher levels in the resistance line than in the susceptible line, which may provide resistance against pathogen infections. The present study might facilitate elucidating the molecular basis of the infection process and identifying candidate genes for resistance improvement of susceptible cultivars.

12.
Front Plant Sci ; 7: 1049, 2016.
Article in English | MEDLINE | ID: mdl-27507974

ABSTRACT

A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.

13.
Front Plant Sci ; 7: 811, 2016.
Article in English | MEDLINE | ID: mdl-27375663

ABSTRACT

Non-heading Chinese cabbage (Brassica rapa ssp. chinensis Makino) is an important vegetable member of Brassica rapa crops. It exhibits a typical sporophytic self-incompatibility (SI) system and is an ideal model plant to explore the mechanism of SI. Gene expression research are frequently used to unravel the complex genetic mechanism and in such studies appropriate reference selection is vital. Validation of reference genes have neither been conducted in Brassica rapa flowers nor in SI trait. In this study, 13 candidate reference genes were selected and examined systematically in 96 non-heading Chinese cabbage flower samples that represent four strategic groups in compatible and self-incompatible lines of non-heading Chinese cabbage. Two RT-qPCR analysis software, geNorm and NormFinder, were used to evaluate the expression stability of these genes systematically. Results revealed that best-ranked references genes should be selected according to specific sample subsets. DNAJ, UKN1, and PP2A were identified as the most stable reference genes among all samples. Moreover, our research further revealed that the widely used reference genes, CYP and ACP, were the least suitable reference genes in most non-heading Chinese cabbage flower sample sets. To further validate the suitability of the reference genes identified in this study, the expression level of SRK and Exo70A1 genes which play important roles in regulating interaction between pollen and stigma were studied. Our study presented the first systematic study of reference gene(s) selection for SI study and provided guidelines to obtain more accurate RT-qPCR results in non-heading Chinese cabbage.

14.
J Proteomics ; 144: 1-10, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27216644

ABSTRACT

UNLABELLED: In Chinese cabbage, leafy head-related traits are directly related to the cabbage yield and marketability, which are often primarily concerned target for breeders. Although intensive studies has been on head formation in Chinese cabbage in the past decade, very scanty information is available on mechanism involved in the head formation under the influence of low temperature at transcriptome and proteome perspective. In this study, quantitative expression profiling based on RNA-Seq transcriptome and iTRAQ proteome were combined to investigate this trait for a global picture of the molecular dynamics. Total of 2931 transcripts and 365 proteins were identified with significantly changed level in abundance from heading and non-heading Chinese cabbage. Related analyses including function annotations, hierarchical categories, as well as the correlation from transcript-to-proteins were performed. The results indicated that the leafy head formation of Chinese cabbage has involved a complex regulatory pattern. The correlated genes that were mapped to the pathway of plant hormone signal transduction suggested that the head formation might be an integrated result of various plant hormones. Our combined analysis will provide a comprehensive approach to understanding the regulation mechanism of leafy head formation in Chinese cabbage. BIOLOGICAL SIGNIFICANCE: This study revealed the direct relation of leafy-heading traits with the yield of the plant. A comprehensive investigation was done by integrating quantitative expression profiling analysis of transcriptome and proteomic to provide crucial information for further research on the molecular mechanism involved in head formation in Chinese cabbage. The correlation of transcript-to-protein in abundance may afford some necessary information of involvement of post-transcriptional factors influencing leafy head formation in Chinese cabbage.


Subject(s)
Brassica/chemistry , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Leaves/chemistry , Proteomics/methods , Brassica/genetics , Brassica/growth & development , Cold Temperature , Gene Expression Regulation, Developmental , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/analysis , Sequence Analysis, RNA , Signal Transduction , Transcriptome/genetics
15.
Front Plant Sci ; 7: 2026, 2016.
Article in English | MEDLINE | ID: mdl-28119712

ABSTRACT

The CO2 concentration in the atmosphere has increased significantly in recent decades and is projected to rise in the future. The effects of elevated CO2 concentrations on morphological and anatomical characteristics, and nutrient accumulation have been determined in several plant species. Carrot is an important vegetable and the effects of elevated CO2 on carrots remain unclear. To investigate the effects of elevated CO2 on the growth of carrots, two carrot cultivars ('Kurodagosun' and 'Deep purple') were treated with ambient CO2 (a[CO2], 400 µmol⋅mol-1) and elevated CO2 (e[CO2], 3000 µmol⋅mol-1) concentrations. Under e[CO2] conditions, taproot and shoot fresh weights and the root/shoot ratio of carrot significantly decreased as compared with the control group. Elevated CO2 resulted in obvious changes in anatomy and ascorbic acid accumulation in carrot roots. Moreover, the transcript profiles of 12 genes related to AsA biosynthesis and recycling were altered in response to e[CO2]. The 'Kurodagosun' and 'Deep purple' carrots differed in sensitivity to e[CO2]. The inhibited carrot taproot and shoot growth treated with e[CO2] could partly lead to changes in xylem development. This study provided novel insights into the effects of e[CO2] on the growth and development of carrots.

16.
Genome ; 58(11): 463-77, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26599708

ABSTRACT

The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.


Subject(s)
Brassica/genetics , Multigene Family , Arabidopsis/genetics , Chromosome Mapping , Evolution, Molecular , Gene Duplication , Gene Expression Profiling , Genes, Plant , Genome, Plant , Genome-Wide Association Study , Phylogeny , Real-Time Polymerase Chain Reaction , Transcription Factors , Transcriptome
17.
BMC Genomics ; 16: 17, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25613160

ABSTRACT

BACKGROUND: The MYB superfamily is one of the most abundant transcription factor (TF) families in plants. MYB proteins include highly conserved N-terminal MYB repeats (1R, R2R3, 3R, and atypical) and various C-terminal sequences that confer extensive functions. However, the functions of most MYB genes are unknown, and have been little studied in Chinese cabbage. RESULTS: Here, we analyzed 256 (55.2% of total MYBs) R2R3-MYB genes from Chinese cabbage (Brassica rapa ssp. pekinensis) and anchored them onto the 10 chromosomes and three subgenomes. The R2R3-, 3R- and atypical MYB proteins in Chinese cabbage formed 45 subgroups based on domain similarity and phylogenetic topology. Organization and syntenic analysis revealed the genomic distribution and collinear relationships of the R2R3-BrMYBs. Synonymous nucleotide substitution (Ka/Ks) analysis showed that the Chinese cabbage MYB DNA-binding domain is under strong purifying selection. Moreover, RNA-seq data revealed tissue-specific and distinct R2R3-BrMYB expression profiles, and quantitative real-time PCR (qPCR) analysis in leaves showed stress responsive expression and crosstalk with ABA-auxin signaling cascades. CONCLUSIONS: In this study, we identified the largest MYB gene family in plants to date. Our results indicate that members of this superfamily may be involved in plant development, stress responses and leaf senescence, highlighting their functional diversity.


Subject(s)
Brassica/genetics , Genome, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Abscisic Acid/pharmacology , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica/classification , Brassica/metabolism , China , Chromosome Mapping , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Phylogeny , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Signal Transduction/drug effects , Transcription Factors/metabolism
18.
Article in English | MEDLINE | ID: mdl-25267795

ABSTRACT

Carrot (Daucus carota L.) is an economically important vegetable worldwide and is the largest source of carotenoids and provitamin A in the human diet. Given the importance of this vegetable to humans, research and breeding communities on carrot should obtain useful genomic and transcriptomic information. The first whole-genome sequences of 'DC-27' carrot were de novo assembled and analyzed. Transcriptomic sequences of 14 carrot genotypes were downloaded from the Sequence Read Archive (SRA) database of National Center for Biotechnology Information (NCBI) and mapped to the whole-genome sequence before assembly. Based on these data sets, the first Web-based genomic and transcriptomic database for D. carota (CarrotDB) was developed (database homepage: http://apiaceae.njau.edu.cn/car rotdb). CarrotDB offers the tools of Genome Map and Basic Local Alignment Search Tool. Using these tools, users can search certain target genes and simple sequence repeats along with designed primers of 'DC-27'. Assembled transcriptomic sequences along with fragments per kilobase of transcript sequence per millions base pairs sequenced information (FPKM) information of 14 carrot genotypes are also provided. Users can download de novo assembled whole-genome sequences, putative gene sequences and putative protein sequences of 'DC-27'. Users can also download transcriptome sequence assemblies of 14 carrot genotypes along with their FPKM information. A total of 2826 transcription factor (TF) genes classified into 57 families were identified in the entire genome sequences. These TF genes were embedded in CarrotDB as an interface. The 'GERMPLASM' part of CarrotDB also offers taproot photos of 45 carrot genotypes and a table containing accession numbers, names, countries of origin and colors of cortex, phloem and xylem parts of taproots corresponding to each carrot genotype. CarrotDB will be continuously updated with new information. Database URL: http://apiaceae.njau.edu.cn/carrotdb/


Subject(s)
Databases, Genetic , Daucus carota , Gene Expression Profiling/methods , Genome, Plant/genetics , Genomics/methods , Daucus carota/genetics , Daucus carota/metabolism , Genes, Plant/genetics , Internet , Seeds/genetics
19.
Res Vet Sci ; 96(2): 283-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24569297

ABSTRACT

Mucosal immunization is advantageous over other routes of antigen delivery because it can induce both mucosal and systemic immune responses. In this study, we have developed fimbriae protein of enterotoxigenic Escherichia coli (ETEC) F41 was stably expressed on the surface Lactobacillus casei 525. The method of expressing vaccine antigens in L. casei induces both systemic and mucosal immunity after oral or intranasal administration. We demonstrate that an oral or intranasal vaccine based on live recombinant L. casei 525 protects infant mice from ETEC F41 infection. This platform technology can be applied to design oral or intranasal vaccine delivery vehicles against several microbial pathogens.


Subject(s)
Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Fimbriae, Bacterial/immunology , Vaccination/methods , Administration, Intranasal , Administration, Oral , Animals , Animals, Newborn , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Escherichia coli Vaccines/administration & dosage , Female , Immunoglobulin A/analysis , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Random Allocation , Specific Pathogen-Free Organisms , Vaccination/standards
20.
Mol Genet Genomics ; 289(1): 77-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24241166

ABSTRACT

Basic helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotic organisms and are thought to be one of the largest families of regulatory proteins. This important family of transcriptional regulators plays crucial roles in plant development. However, a systematic analysis of the bHLH transcription factor family has not been reported in Chinese cabbage. In this study, 230 bHLH transcription factors were identified from the whole Chinese cabbage genome and compared with proteins from other representative plants, fungi and metazoans. The Chinese cabbage bHLH (BrabHLH) gene family could be classified into 24 subfamilies. Phylogenetic analysis of BrabHLHs along with bHLHs from Arabidopsis and rice indicated 26 subfamilies. The identification, classification, phylogenetic reconstruction, conserved motifs, chromosome distribution, functional annotation, expression patterns and interaction networks of BrabHLHs were analyzed. Distribution mapping showed that BrabHLHs were non-randomly located on the ten Chinese cabbage chromosomes. One hundred and twenty-four orthologous bHLH genes were identified between Chinese cabbage and Arabidopsis, and the interaction networks of the orthologous genes were constructed in Chinese cabbage. Quantitative RT-PCR analysis showed that expressions of BrabHLH genes varied widely under different abiotic stress treatments for different times. Thus, this comprehensive analysis of BrabHLHs represents a rich resource, aiding the elucidation of the roles of bHLH family members in plant growth and development. Furthermore, the comparative genomics analysis deepened our understanding of the evolution of this gene family after a polyploidy event.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Brassica/genetics , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Asian People , Brassica/classification , Chromosome Mapping , Evolution, Molecular , Gene Regulatory Networks , Humans , Phylogeny , RNA, Messenger/genetics , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...