Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Mater Au ; 3(6): 669-677, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38089664

ABSTRACT

Pressure sensors are considered the key technology for potential applications in real-time health monitoring, artificial electronic skins, and human-machine interfaces. Despite the significant progress in developing novel sensitive materials and constructing unique sensor structures, it remains challenging to fabricate large-area pressure sensor arrays due to the involvement of complex procedures including photolithography, laser writing, or coating. Herein, a scalable manufacturing approach for the realization of pressure sensor arrays with substantially enlarged sensitive areas is proposed using a versatile screen-printing technique. A compensation mechanism is introduced into the printing process to ensure the precise alignment of conductive electrodes, insulation layers, and sensitive microstructures with an alignment error of less than 4 µm. The fully screen-printed sensors exhibit excellent collective sensing performance, such as a reasonable pressure sensitivity of -2.2 kPa-1, a fast response time of 40 ms, and superior durability over 3000 consecutive pressures. Additionally, an integrated 16 × 32 pressure sensor array with a sensing area of 190 × 380 mm2 is demonstrated to precisely recognize the sitting postures and the body weights, showing great potential in continuous and real-time health status monitoring.

2.
Physiol Plant ; 172(4): 2203-2216, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34050530

ABSTRACT

Fruits are reproductive organs in flowering plants and the harvested products of many agricultural crops. They play an increasingly important role in the human diet due to their nutritional values. Water is the most abundant component of most fleshy fruits, and it is essential for fruit growth and quality formation. Water is transported to the fruit via the vascular system (xylem and phloem) and lost to the air through the fruit surface due to transpiration. This minireview presents a framework for understanding water transport in fleshy fruits along with brief introductions of key methodologies used in this research field. We summarize the advances in the research on the patterns of water flow into and out of the fruit over development and under different environmental conditions and cultural practices. We review the key findings on fruit transpiration, xylem transport, phloem transport, and the coordination of water flows in maintaining fruit water balance. We also summarize research on post-vascular water transport mediated by aquaporins in fruits. More efforts are needed to elucidate the mechanisms by which different environmental conditions impact fruit water transport at the micro-level and to better understand the physiological implications of the coordination of water flows. Incorporating fruit water transport into the research area of plant hydraulics will provide new insights into water transport in the soil-plant-atmosphere continuum.


Subject(s)
Fruit , Plant Transpiration , Phloem , Water , Xylem
3.
J Exp Bot ; 72(7): 2741-2756, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33420789

ABSTRACT

Xylem water transport from the parent plant plays a crucial role in fruit growth, development, and the determination of quality. Attempts have been made to partition the hydraulic resistance of the pathway over the course of development, but no consensus has been reached. Furthermore, the issue has not been addressed in the context of changing plant and fruit water status under water deficit conditions. In this study, we have conducted a rigorous investigation into the developmental changes that occur in the hydraulic properties of tomato fruits and their pedicels under well-irrigated and water deficit conditions, based on hydraulic measurements, fruit rehydration, dye-tracing, light and electron microscopy, and flow modeling. We found that a decline in water transport capacity during development did not occur in the xylem pathway leading up to the fruit, but within the fruit itself, where the effect might reside either inside or outside of the xylem pathway. The developmental pattern of the hydraulic resistance of the xylem pathway was not significantly influenced by water deficit. The changes in xylem flow between the fruit and the parent plant resulting from the reduced driving force under water deficit could explain the reduced accumulation of water in the fruit. This study provides new insights that aid our understanding of xylem water transport in fleshy fruits and its sensitivity to water deficit from a hydraulic perspective.


Subject(s)
Solanum lycopersicum , Biological Transport , Fruit , Water , Xylem
4.
J Exp Bot ; 71(4): 1249-1264, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31750924

ABSTRACT

Fruit is important for human health, and applying deficit irrigation in fruit production is a strategy to regulate fruit quality and support environmental sustainability. Responses of different fruit quality variables to deficit irrigation have been widely documented, and much progress has been made in understanding the mechanisms of these responses. We review the effects of water shortage on fruit water accumulation considering water transport from the parent plant into the fruit determined by hydraulic properties of the pathway (including xylem water transport and transmembrane water transport regulated by aquaporins) and the driving force for water movement. We discuss water relations and solute metabolism that affect the main fruit quality variables (e.g. size, flavour, nutrition, and firmness) at the cellular level under water shortage. We also summarize the most recent advances in the understanding of responses of the main fruit quality variables to water shortage, considering the effects of variety, the severity of water deficit imposed, and the developmental stage of the fruit. We finally identify knowledge gaps and suggest avenues for future research. This review provides new insights into the stress physiology of fleshy fruit, which will be beneficial for the sustainable production of high-quality fruit under deficit irrigation.


Subject(s)
Solanum lycopersicum , Fruit , Water , Water Insecurity , Xylem
5.
Nanotechnology ; 31(8): 085701, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31645020

ABSTRACT

The optical properties of CsPbCl3 perovskite nanocrystals (NCs) with varied sizes were studied in the temperature range from 80 to 320 K by steady-state and time-resolved photoluminescence (PL) spectroscopy. The CsPbCl3 NCs were synthesized with a hot-injection approach at reaction temperature of 140-180 °C. The PL emissions in NC films originate from localized excitons. It is found that NC films shows a significant decrease in PL intensity with increasing temperature while they exhibit a clear increase in PL lifetime from 80 K to around 250 K and then a reduction at high temperature. The abnormal temperature dependence of PL lifetimes in NC films is related to thermal activation of trapped carriers in the NCs. The change of average lifetimes with emission energy indicates the thermal degradation result from the loss of ligands on the surface of NC films. Moreover, the PL intensities, peak energies, and bandwidths of the NC films as a function of temperature are discussed detail.

6.
Front Plant Sci ; 10: 893, 2019.
Article in English | MEDLINE | ID: mdl-31354766

ABSTRACT

Polyprenyl diphosphate synthase (PPS) plays important roles in the biosynthesis of functionally important plastoquinone (PQ) and ubiquinone (UQ). However, only few plant PPS genes have been functionally characterized. Through genome-wide analysis, two PPS genes, termed SmPPS1 and SmPPS2, were identified from Salvia miltiorrhiza, an economically significant Traditional Chinese Medicine material and an emerging model medicinal plant. SmPPS1 and SmPPS2 belonged to different phylogenetic subgroups of plant trans-long-chain prenyltransferases and exhibited differential tissue expression and light-induced expression patterns. Computational prediction and transient expression assays showed that SmPPS1 was localized in the chloroplasts, whereas SmPPS2 was mainly localized in the mitochondria. SmPPS2, but not SmPPS1, could functionally complement the coq1 mutation in yeast cells and catalyzed the production of UQ-9 and UQ-10. Consistently, both UQ-9 and UQ-10 were detected in S. miltiorrhiza plants. Overexpression of SmPPS2 caused significant UQ accumulation in S. miltiorrhiza transgenics, whereas down-regulation resulted in decreased UQ content. Differently, SmPPS1 overexpression significantly elevated PQ-9 content in S. miltiorrhiza. Transgenic lines showing a down-regulation of SmPPS1 expression exhibited decreased PQ-9 level, abnormal chloroplast and trichome development, and varied leaf bleaching phenotypes. These results suggest that SmPPS1 is involved in PQ-9 biosynthesis, whereas SmPPS2 is involved in UQ-9 and UQ-10 biosynthesis.

7.
Phys Chem Chem Phys ; 19(13): 8934-8940, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28300235

ABSTRACT

The luminescence properties of inorganic perovskite CsPbBr3 nanocrystals (NCs) with emissions of 492 and 517 nm under thermal annealing treatment were studied by temperature-dependent photoluminescence (PL) spectroscopy. The CsPbBr3 NCs were annealed in vacuum at various temperatures. It was found that the NCs exhibited significant thermal degradation of PL at thermal annealing temperatures above 320 K. The transmission electron microscopy, X-ray diffraction and PL spectroscopy demonstrated that the size of NCs almost kept constant at thermal annealing temperatures below 360 K while it significantly enlarged at higher thermal temperatures above 380 K. The PL intensities, peak energies and linewidths of the annealed NCs, as a function of temperature, are discussed in detail. The PL degradation of the NCs was related to the formation of nonradiative recombination centers due to the loss of ligands and growth of NCs under thermal annealing.

8.
Mol Biol Rep ; 40(7): 4301-10, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23644983

ABSTRACT

Salvia miltiorrhiza Bunge is a well-known material of traditional Chinese medicine. Hydrophilic phenolic acids, such as rosmarinic acid and salvianolic acid B, are a group of pharmaceutically important compounds in S. miltiorrhiza. The biosynthesis of rosmarinic acid requires the coordination of the phenylpropanoid pathway and the tyrosine-derived pathway. Phenylalanine ammonia-lyase (PAL) is the first key enzyme of the phenylpropanoid pathway. Systematic analysis of the SmPAL gene family has not been carried out. We report here the identification of three SmPALs through searching the recently obtained working draft of the S. miltiorrhiza genome and full-length cDNA cloning. Bioinformatic and phylogenetic analyses showed that SmPAL1 and SmPAL3 clustered in a sub-clade of dicot PALs, whereas SmPAL2 fell into the other one. Some important cis-elements were conserved in three SmPAL promoters, whereas the others were not. SmPAL1 and SmPAL3 were highly expressed in roots and leaves of S. miltiorrhiza, but SmPAL2 were predominately expressed in stems and flowers. It indicates that SmPAL1 and SmPAL3 function redundantly in rosmarinic acid biosynthesis. All SmPALs were induced in roots treated with PEG and MeJA, but the time and degree of responses were different, suggesting the complexity of SmPAL-associated metabolic network in S. miltiorrhiza. This is the first comprehensive study dedicated to SmPAL gene family characterization. The results provide a basis for elucidating the role of SmPAL genes in the biosynthesis of bioactive compounds.


Subject(s)
Multigene Family , Phenylalanine Ammonia-Lyase/genetics , Salvia miltiorrhiza/genetics , 5' Flanking Region , Amino Acid Sequence , Biosynthetic Pathways , Cinnamates/metabolism , Cloning, Molecular , DNA, Complementary/genetics , Depsides/metabolism , Gene Expression , Gene Expression Regulation, Plant , Genome, Plant , Molecular Sequence Data , Organ Specificity/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Salvia miltiorrhiza/enzymology , Sequence Alignment , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...