Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Adv Healthc Mater ; 9(8): e1901366, 2020 04.
Article in English | MEDLINE | ID: mdl-31951109

ABSTRACT

Oncogenic transformation of mammary epithelial cells (MECs) is a critical step in epithelial-to-mesenchymal transition (EMT), but evidence also shows that MECs undergo EMT with increasing matrix stiffness; the interplay of genetic and environmental effects on EMT is not clear. To understand their combinatorial effects on EMT, premalignant MCF10A and isogenic Ras-transformed MCF10AT are cultured on polyacrylamide gels ranging from normal mammary stiffness, ≈150 Pa, to tumor stiffness, ≈5700 Pa. Though cells spread on stiff hydrogels independent of transformation, only 10AT cells exhibit heterogeneous spreading behavior on soft hydrogels. Within this mixed population, spread cells exhibit an elongated, mesenchymal-like morphology, disrupted localization of the basement membrane, and nuclear localization of the EMT transcription factor TWIST1. MCF10AT spreading is not driven by typical mechanosensitive pathways including YAP and TGF-ß or by myosin contraction. Rather, ERK activation induces spreading of MCF10AT cells on soft hydrogels and requires dynamic microtubules. These findings indicate the importance of oncogenic signals, and their hierarchy with substrate mechanics, in regulating MEC EMT.


Subject(s)
Epithelial Cells , Epithelial-Mesenchymal Transition , Transcription Factors , Transforming Growth Factor beta
2.
Nat Biomed Eng ; 3(2): 137-146, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30911429

ABSTRACT

How common polymorphisms in noncoding genome regions can regulate cellular function remains largely unknown. Here we show that cardiac fibrosis, mimicked using a hydrogel with controllable stiffness, affects the regulation of the phenotypes of human cardiomyocytes by a portion of the long noncoding RNA ANRIL, the gene of which is located in the disease-associated 9p21 locus. In a physiological environment, cultured cardiomyocytes derived from induced pluripotent stem cells obtained from patients who are homozygous for cardiovascular-risk alleles (R/R cardiomyocytes) or from healthy individuals who are homozygous for nonrisk alleles contracted synchronously, independently of genotype. After hydrogel stiffening to mimic fibrosis, only the R/R cardiomyocytes exhibited asynchronous contractions. These effects were associated with increased expression of the short ANRIL isoform in R/R cardiomyocytes, which induced a c-Jun N-terminal kinase (JNK) phosphorylation-based mechanism that impaired gap junctions (particularly, loss of connexin-43 expression) following stiffening. Deletion of the risk locus or treatment with a JNK antagonist was sufficient to maintain gap junctions and prevent asynchronous contraction of cardiomyocytes. Our findings suggest that mechanical changes in the microenvironment of cardiomyocytes can activate the regulation of their function by noncoding loci.

SELECTION OF CITATIONS
SEARCH DETAIL
...