Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Chemosphere ; 233: 597-602, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31195264

ABSTRACT

Carbaryl wastewater treatment and the resource recycling of biomass as sludge by Rhodopseudomonas sphaeroides (R. sphaeroides) with the assistance of starch processing wastewater (SPW) was investigated in this research. It was observed that carbaryl was not degraded under the 100, 500 mg/L COD groups. The addition of SPW assisted R. sphaeroides to degrade carbaryl efficiently. Carbaryl removal reached 100% after 5 days under the optimal group (3500 mg/L). Interestingly, carbaryl in the mixed wastewater began to be degraded after day 1. Further research indicated that cehA gene was expressed after day 1. Subsequently, carbaryl hydrolase was synthesized under gene regulation. Analysis revealed that cehA and carbaryl hydrolase were adaptive gene expressions and enzymes. Carbaryl as stimulus signal started cehA gene expression through signal transduction pathway. This process took one day for R. sphaeroides. However, organics in 100, 500 mg/L COD groups were deficient, which could not maintain R. sphaeroides growth for over one day. Organics in SPW provided sufficient carbon sources for R. sphaeroides under other groups. The method could complete the mixed (SPW and carbaryl) wastewater treatment, carbaryl removal, the resource recycling of R. sphaeroides biomass as sludge simultaneously.


Subject(s)
Carbaryl/metabolism , Rhodobacter sphaeroides/metabolism , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Biomass , Sewage , Wastewater/microbiology , Water Purification
4.
J Environ Manage ; 245: 168-172, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31152960

ABSTRACT

The biorestoration of cyhalofop-butyl and fertility in soil using Rhodopseudanonas palustris (R. palustris) in the treated wastewater were investigated in this research. Cyhalofop-butyl was not degraded under control group. The treated wastewater containing R. palustris degraded cyhalofop-butyl and remediated fertility. Interestingly, the cyhalofop-butyl-hydrolyzing carboxylesterase gene was expressed after inoculation 24 h. Subsequently, the cyhalofop-butyl-hydrolyzing carboxylesterase were synthesized to degrade cyhalofop-butyl. The cyhalofop-butyl started to be degraded after inoculation 24 h. The cyhalofop-butyl as stimulus signal induced cyhalofop-butyl-hydrolyzing carboxylesterase gene expression through signal transduction pathway. This process took 24 h for R. palustris as they were ancient bacteria. The residual organics in the wastewater provided sufficient carbon sources and energy for R. palustris under three dosage groups. The new method completed the remediation of cyhalofop-butyl pollution, the improvement of soil fertility and soybean processing wastewater treatment simultaneously, and realized the resource reutilization of wastewater and R. palustris as sludge.


Subject(s)
Herbicides , Wastewater , Butanes , Nitriles , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...