Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 266(Pt 1): 131002, 2024 May.
Article in English | MEDLINE | ID: mdl-38522680

ABSTRACT

Bio-based food packaging materials have elicited growing interests due to their great degradability, high safety and active biofunctions. In this work, by simultaneously introducing the polyphenolic extracts from Capsicum annuum leaves and ferric ion (Fe3+) into the Polyvinyl alcohol/kappa-carrageenan (PVA/κ-carrageenan)-based film-forming matrix, an active package film was developed, with the purpose to improve the food shelf life. The experimental results indicated that the existence of Fe3+ can not only improve the mechanical properties owing to the multiple dynamic coordinated interactions, but also endow the composite films with excellent fire-retardancy. Moreover, the composite films could display excellent UV resistant performance, water vapor/oxygen gas barrier properties and antioxidant activities with the corporation of polyphenols. In particular, the highest DPPH and ABTS radical scavenging capacities for composite film (PC-PLP7 sample) were evaluated to be 82.5 % and 91.1 %, respectively. Higher polyphenol concentration is favorable to the bio-functions of the materials. Benefitting from these features, this novel kind of films with a dense and steady micro-structure could be further applicated in fruit preservations, where the ripening bananas were ensured with the high storage quality. This integration as a prospective food packaging material provides an economic and eco-friendly approach to excavate the high added-values of biomass.


Subject(s)
Capsicum , Carrageenan , Food Packaging , Fruit , Plant Leaves , Polyphenols , Polyvinyl Alcohol , Capsicum/chemistry , Polyphenols/chemistry , Carrageenan/chemistry , Polyvinyl Alcohol/chemistry , Plant Leaves/chemistry , Food Packaging/methods , Fruit/chemistry , Antioxidants/chemistry , Ferric Compounds/chemistry
2.
Hepatology ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38015993

ABSTRACT

BACKGROUND AND AIMS: Pseudouridine is a prevalent RNA modification and is highly present in the serum and urine of patients with HCC. However, the role of pseudouridylation and its modifiers in HCC remains unknown. We investigated the function and underlying mechanism of pseudouridine synthase 1 (PUS1) in HCC. APPROACH AND RESULTS: By analyzing the TCGA data set, PUS1 was found to be significantly upregulated in human HCC specimens and positively correlated with tumor grade and poor prognosis of HCC. Knockdown of PUS1 inhibited cell proliferation and the growth of tumors in a subcutaneous xenograft mouse model. Accordingly, increased cell proliferation and tumor growth were observed in PUS1-overexpressing cells. Furthermore, overexpression of PUS1 significantly accelerates tumor formation in a mouse HCC model established by hydrodynamic tail vein injection, while knockout of PUS1 decreases it. Additionally, PUS1 catalytic activity is required for HCC tumorigenesis. Mechanistically, we profiled the mRNA targets of PUS1 by utilizing surveying targets by apolipoprotein B mRNA-editing enzyme 1 (APOBEC1)-mediated profiling and found that PUS1 incorporated pseudouridine into mRNAs of a set of oncogenes, thereby endowing them with greater translation capacity. CONCLUSIONS: Our study highlights the critical role of PUS1 and pseudouridylation in HCC development, and provides new insight that PUS1 enhances the protein levels of a set of oncogenes, including insulin receptor substrate 1 (IRS1) and c-MYC, by means of pseudouridylation-mediated mRNA translation.

3.
J Exp Clin Cancer Res ; 42(1): 194, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37542342

ABSTRACT

BACKGROUND: RNA binding proteins (RBPs)-regulated gene expression play a vital role in various pathological processes, including the progression of cancer. However, the role of RBP in hepatocellular carcinoma (HCC) remains much unknown. In this study, we aimed to explore the contribution of RBP CCDC137 in HCC development. METHODS: We analyzed the altered expression level and clinical significance of CCDC137 in database and HCC specimens. In vitro cell assays and in vivo spontaneous mouse models were used to assess the function of CCDC137. Finally, the molecular mechanisms of how CCDC137 regulates gene expression and promotes HCC was explored. RESULTS: CCDC137 is aberrantly upregulated in HCC and correlates with poor clinical outcomes in HCC patients. CCDC137 markedly promoted HCC proliferation and progression in vitro and in vivo. Mechanistically, CCDC137 binds with FOXM1, JTV1, LASP1 and FLOT2 mRNAs, which was revealed by APOBEC1-mediated profiling, to increase their cytoplasmic localization and thus enhance their protein expressions. Upregulation of FOXM1, JTV1, LASP1 and FLOT2 subsequently synergistically activate AKT signaling and promote HCC. Interestingly, we found that CCDC137 binds with the microprocessor protein DGCR8 and DGCR8 has a novel non-canonical function in mRNA subcellular localization, which mediates the cytoplasmic distribution of mRNAs regulated by CCDC137. CONCLUSIONS: Our results identify a critical proliferation-related role of CCDC137 and reveal a novel CCDC137/DGCR8/mRNA localization/AKT axis in HCC progression, which provide a potential target for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Mice , Carcinoma, Hepatocellular/pathology , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Genes Dis ; 10(6): 2491-2510, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37554208

ABSTRACT

Long noncoding RNAs (lncRNAs) have been confirmed to play a crucial role in various biological processes across several species. Though many efforts have been devoted to the expansion of the lncRNAs landscape, much about lncRNAs is still unknown due to their great complexity. The development of high-throughput technologies and the constantly improved bioinformatic methods have resulted in a rapid expansion of lncRNA research and relevant databases. In this review, we introduced genome-wide research of lncRNAs in three parts: (i) novel lncRNA identification by high-throughput sequencing and computational pipelines; (ii) functional characterization of lncRNAs by expression atlas profiling, genome-scale screening, and the research of cancer-related lncRNAs; (iii) mechanism research by large-scale experimental technologies and computational analysis. Besides, primary experimental methods and bioinformatic pipelines related to these three parts are summarized. This review aimed to provide a comprehensive and systemic overview of lncRNA genome-wide research strategies and indicate a genome-wide lncRNA research system.

5.
Adv Sci (Weinh) ; 10(23): e2301983, 2023 08.
Article in English | MEDLINE | ID: mdl-37271897

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive and fatal disease caused by a subset of cancer stem cells (CSCs). It is estimated that there are approximately 100 000 long noncoding RNAs (lncRNAs) in humans. However, the mechanisms by which lncRNAs affect tumor stemness remain poorly understood. In the present study, it is found that DIO3OS is a conserved lncRNA that is generally downregulated in multiple cancers, including HCC, and its low expression correlates with poor clinical outcomes in HCC. In in vitro cancer cell lines and an in vivo spontaneous HCC mouse model, DIO3OS markedly represses tumor development via its suppressive role in CSCs through downregulation of zinc finger E-box binding homeobox 1 (ZEB1). Interestingly, DIO3OS represses ZEB1 post-transcriptionally without affecting its mRNA levels. Subsequent experiments show that DIO3OS interacts with the NONO protein and restricts NONO-mediated nuclear export of ZEB1 mRNA. Overall, these findings demonstrate that the DIO3OS-NONO-ZEB1 axis restricts HCC development and offers a valuable candidate for CSC-targeted therapeutics for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Active Transport, Cell Nucleus , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
6.
Carbohydr Polym ; 313: 120869, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37182960

ABSTRACT

The traditional κ-carrageenan (κCG)-based hydrogel obtained from hot water can rupture easily under mechanical loading. To address this vulnerability, here we presented a robust all-κCG hydrogel without employing the second synthetic network. By simply regulating the polymer chains from random coil to stiff chain conformation in NaOH/urea solvent system via the freeze-thawing process, the as-prepared hydrogel with homogeneous structure can display an enhanced stretchability from 42.1 to 156 %, while maintaining the similar fracture stress. Moreover, upon the stepwise mechanical training and subsequent incubation in KCl aqueous solution, more helical segments of κCG were aligned and involved into the association domains, thus leading to the increment in both the crystallinity and anisotropy. Consequently, a fast self-strengthening behavior occurred, and a more stretchable (fracture strain up to 396 %), strong (stress âˆ¼ 0.55 MPa) and tough (∼1.52 MJ m-3) κCG hydrogel was obtained. In comparison to the traditional one, the fracture strain and toughness are increased by 8.5 and 11.5 times, respectively. In addition, this κCG hydrogel can demonstrate good recovery and shape-memory behaviors under medium deformation. Hence, this tough all-κCG hydrogel is expected to be tailored into the biomaterials as the wearable device, artificial tendon, and cartilage in the future.

7.
J Mater Chem B ; 10(1): 120-130, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34889938

ABSTRACT

A novel strategy to fabricate bilayer hydrogel actuators based on the asymmetric distribution of crystalline regions across the bilayer structures was proposed. By employing PVA polymer chains into an alkali solvent-derived chitosan hydrogel matrix, chitosan/PVA hybrid bilayer hydrogels with both excellent responsive bending and mechanical properties were obtained as pH-controlled manipulators. In the design, the chitosan/PVA hydrogels upon treatment with freeze-thawing cycles were taken as the first monolayer, where excessive crystalline regions appeared. The original chitosan/PVA hydrogel as the second monolayer was then integrated into one bilayer device through the chemical-crosslinking of epichlorohydrin at the interface. The results showed that the resultant chitosan/PVA bilayer hydrogel actuator with a weight ratio of 3 : 1 displayed better sensitivity upon exposure to stimuli. The actuation behaviors are strongly dependent on experimental parameters such as the pH, PVA content and the chemical-crosslinking density. It is proposed that the driving force originates from the asymmetric distribution of crystalline regions, thus resulting in differential swelling ratios between the monolayers. In addition, programmable 3D shape transformations were achieved by using the bilayer hydrogel with designed 2D geometric patterns, and the tailored gripper-like hydrogel actuator can successfully capture and transport the cargo. Moreover, this actuation behavior can be erased and re-written on demand under certain conditions. Taking advantage of this universal strategy, more attractive actuators derived from synthetic or natural polymers in combination with PVA are highly expected, which can be used as smart soft robots in various fields such as manipulators, grippers, and cantilever sensors.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Crystallization , Materials Testing , Particle Size
8.
Front Cell Dev Biol ; 9: 762669, 2021.
Article in English | MEDLINE | ID: mdl-34722547

ABSTRACT

Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various biological processes, making it essential to profile m6A modification on a transcriptome-wide scale in developing muscle. Patterns of m6A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m6A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m6A-lncRNAs harbor the consensus m6A motif "DRACH" along lncRNA transcripts. Interestingly, we found that m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m6A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m6A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle.

9.
Front Cell Dev Biol ; 9: 744171, 2021.
Article in English | MEDLINE | ID: mdl-34660602

ABSTRACT

N6-methyladenosine (m6A) RNA methylation has emerged as an important factor in various biological processes by regulating gene expression. However, the dynamic profile, function and underlying molecular mechanism of m6A modification during skeletal myogenesis remain elusive. Here, we report that members of the m6A core methyltransferase complex, METTL3 and METTL14, are downregulated during skeletal muscle development. Overexpression of either METTL3 or METTL14 dramatically blocks myotubes formation. Correspondingly, knockdown of METTL3 or METTL14 accelerates the differentiation of skeletal muscle cells. Genome-wide transcriptome analysis suggests ERK/MAPK is the downstream signaling pathway that is regulated to the greatest extent by METTL3/METTL14. Indeed, METTL3/METTL14 expression facilitates ERK/MAPK signaling. Via MeRIP-seq, we found that MNK2, a critical regulator of ERK/MAPK signaling, is m6A modified and is a direct target of METTL3/METTL14. We further revealed that YTHDF1 is a potential reader of m6A on MNK2, regulating MNK2 protein levels without affecting mRNA levels. Furthermore, we discovered that METTL3/14-MNK2 axis was up-regulated notably after acute skeletal muscle injury. Collectively, our studies revealed that the m6A writers METTL3/METTL14 and the m6A reader YTHDF1 orchestrate MNK2 expression posttranscriptionally and thus control ERK signaling, which is required for the maintenance of muscle myogenesis and may contribute to regeneration.

10.
Cell Death Discov ; 7(1): 110, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001866

ABSTRACT

MALAT1-associated small cytoplasmic RNA (mascRNA) is a cytoplasmic tRNA-like small RNA derived from nucleus-located long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). While MALAT1 was extensively studied and was found to function in multiple cellular processes, including tumorigenesis and tumor progression, the role of mascRNA was largely unknown. Here we show that mascRNA is upregulated in multiple cancer cell lines and hepatocellular carcinoma (HCC) clinical samples. Using HCC cells as model, we found that mascRNA and its parent lncRNA MALAT1 can both promote cell proliferation, migration, and invasion in vitro. Correspondingly, both of them can enhance the tumor growth in mice subcutaneous tumor model and can promote metastasis by tail intravenous injection of HCC cells. Furthermore, we revealed that mascRNA and MALAT1 can both activate ERK/MAPK signaling pathway, which regulates metastasis-related genes and may contribute to the aggressive phenotype of HCC cells. Our results indicate a coordination in function and mechanism of mascRNA and MALAT1 during development and progress of HCC, and provide a paradigm for deciphering tRNA-like structures and their parent transcripts in mammalian cells.

11.
Biochem Biophys Res Commun ; 552: 52-58, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33740664

ABSTRACT

METTL3 increasing the mature miRNA levels via N6-Methyladenosine (m6A) modification of primary miRNA (pri-miRNA) transcripts has emerged as an important post-transcriptional regulation of miRNA biogenesis. Our previous studies and others have showed that muscle specific miRNAs are essential for skeletal muscle differentiation. Whether these miRNAs are also regulated by METTL3 is still unclear. Here, we found that m6A motifs were present around most of these miRNAs, which were indeed m6A modified as confirmed by m6A-modified RNA immunoprecipitation (m6A RIP). However, we surprisingly found that these muscle specific miRNAs were repressed instead of increased by METTL3 in C2C12 in vitro differentiation and mouse skeletal muscle regeneration after injury in vivo model. To elucidate the underlined mechanism, we performed reporter assays in 293T cells and validated METTL3 increasing these miRNAs at post-transcriptional level as expected. Furthermore, in myogenic C2C12 cells, we found that METTL3 not only repressed the expression of myogenic transcription factors (TFs) which can enhance the muscle specific miRNAs, but also increased the expression of epigenetic regulators which can repress these miRNAs. Thus, METTL3 could repress the muscle specific miRNAs at transcriptional level indirectly. Taken together, our results demonstrated that skeletal muscle specific miRNAs were repressed by METTL3 and such repression is likely synthesized transcriptional and post-transcriptional regulations.


Subject(s)
Methyltransferases/genetics , MicroRNAs/genetics , Muscle, Skeletal/metabolism , RNA Processing, Post-Transcriptional/genetics , Transcriptional Activation/genetics , Animals , Cell Differentiation/genetics , Cell Line , HEK293 Cells , Humans , Male , Methyltransferases/metabolism , Mice, Inbred C57BL , MicroRNAs/metabolism , Muscle, Skeletal/cytology , Myoblasts/cytology , Myoblasts/metabolism , Reverse Transcriptase Polymerase Chain Reaction
12.
Exp Cell Res ; 400(2): 112492, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33529710

ABSTRACT

DNA N6-methyladenine (N6-mA) was recently recognized as a new epigenetic modification in mammalian genome, and ALKBH1 was discovered as its demethylase. Knock-out mice studies revealed that ALKBH1 was indispensable for normal embryonic development. However, the function of ALKBH1 in myogenesis is largely unknown. In this study, we found that N6-mA showed a steady increase, going along with a strong decrease of ALKBH1 during skeletal muscle development. Our results also showed that ALKBH1 enhanced proliferation and inhibited differentiation of C2C12 cells. Genome-wide transcriptome analysis and reporter assays further revealed that ALKBH1 accomplished the differentiation inhibiting function by regulating a core set of genes and multiple signaling pathways, including increasing chemokine (C-X-C motif) ligand 14 (CXCL14) and activating ERK signaling. Taken together, our results demonstrated that ALKBH1 is critical for the myogenic differentiation of C2C12 cells, and suggested that N6-mA might be a new epigenetic mechanism for the regulation of myogenesis.


Subject(s)
Adenine/analogs & derivatives , AlkB Homolog 1, Histone H2a Dioxygenase/metabolism , Cell Differentiation , Epigenesis, Genetic , Muscle Development , Muscle, Skeletal/pathology , Myoblasts/pathology , Adenine/chemistry , AlkB Homolog 1, Histone H2a Dioxygenase/genetics , Animals , DNA Methylation , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Myoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...