Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Cancer ; 15(12): 3645-3662, 2024.
Article in English | MEDLINE | ID: mdl-38911369

ABSTRACT

Background: Liver hepatocellular carcinoma (LIHC) is one of the leading causes of cancer-related death. The prognostic outcomes of advanced LIHC patients are poor. Hence, reliable prognostic biomarkers for LIHC are urgently needed. Methods: Data for vesicle-mediated transport-related genes (VMTRGs) were profiled from 338 LIHC and 50 normal tissue samples downloaded from The Cancer Genome Atlas (TCGA). Univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were performed to construct and optimize the prognostic risk model. Five GEO datasets were used to validate the risk model. The roles of the differentially expressed genes (DEGs) were investigated via Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. Differences in immune cell infiltration between the high- and low-risk groups were evaluated using five algorithms. The "pRRophetic" was used to calculate the anticancer drug sensitivity of the two groups. Transwell and wound healing assays were performed to assess the role of GDP dissociation inhibitor 2 (GDI2) on LIHC cells. Results: A total of 166 prognosis-associated VMTRGs were identified, and VMTRGs-based risk model was constructed for the prognosis of LIHC patients. Four VMTRGs (GDI2, DYNC1LI1, KIF2C, and RAB32) constitute the principal components of the risk model associated with the clinical outcomes of LIHC. Tumor stage and risk score were extracted as the main prognostic indicators for LIHC patients. The VMTRGs-based risk model was significantly associated with immune responses and high expression of immune checkpoint molecules. High-risk patients were less sensitive to most chemotherapeutic drugs but benefited from immunotherapies. In vitro cellular assays revealed that GDI2 significantly promoted the growth and migration of LIHC cells. Conclusions: A VMTRGs-based risk model was constructed to predict the prognosis of LIHC patients effectively. This risk model was closely associated with the immune infiltration microenvironment. The four key VMTRGs are powerful prognostic biomarkers and therapeutic targets for LIHC.

2.
Article in English | MEDLINE | ID: mdl-38756073

ABSTRACT

INTRODUCTION: Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum-resistant OC patients. METHODS: Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments. RESULTS: Three gene sets associated with oxidative stress-related pathways were enriched (p < 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p < 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p < 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells. CONCLUSION: The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.

3.
Int J Surg ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788195

ABSTRACT

OBJECTIVE: Most bladder cancers are non-muscle invasive bladder cancer (NMIBC), and transurethral resection of bladder tumors (TURBT) is the standard treatment. However, postoperative recurrence remains a significant challenge, and the influence of bladder tumor location on prognosis is still unclear. This study aims to investigate how tumor location affects the prognosis of NMIBC patients undergoing TURBT and to identify the optimal surgical approach. METHODS: A multicenter study was conducted, which included Chinese NMIBC data from 15 hospitals (1996-2019) and data from 17 registries of the Surveillance, Epidemiology, and End Results database (SEER) (2000-2020). Patients initially diagnosed with NMIBC and undergoing TURBT or partial cystectomy were analyzed, with cases lost to follow-up or with missing data excluded. The study investigated the overall survival (OS), disease-specific survival (DSS), and recurrence-free survival (RFS) among patients with different tumor locations. Kaplan-Meier, Cox regression, and propensity score matching methods were employed to explore the association between tumor location and prognosis. Stratified populations were analyzed to minimize bias. RESULTS: This study included 118,477 NMIBC patients and highlighted tumor location as a crucial factor impacting post-TURBT prognosis. Both anterior wall and dome tumors independently predicted adverse outcomes in two cohorts. For anterior wall tumors, the Chinese cohort showed hazard ratios (HR) for OS of 4.35 (P < 0.0001); RFS of 2.21 (P < 0.0001); SEER cohort OS HR of 1.10 (P = 0.0001); DSS HR of 1.13 (P = 0.0183). Dome tumors displayed similar trends (Chinese NMIBC cohort OS HR of 7.91 (P < 0.0001); RFS HR of 2.12 (P < 0.0001); SEER OS HR of 1.05 (P = 0.0087); DSS HR of 1.14 (P = 0.0006)). Partial cystectomy significantly improved the survival of dome tumor patients compared to standard TURBT treatment (P < 0.01). CONCLUSION: This study reveals the significant impact of tumor location in NMIBC patients on the outcomes of TURBT treatment, with tumors in the anterior wall and bladder dome showing poor post-TURBT prognosis. Compared to TURBT treatment, partial cystectomy improves the prognosis for bladder dome tumors. This study provides guidance for personalized treatment and prognosis management for NMIBC patients.

4.
MedComm (2020) ; 5(3): e512, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469549

ABSTRACT

Therapeutic antibodies (Abs) improve the clinical outcome of cancer patients. However, on-target off-tumor toxicity limits Ab-based therapeutics. Cluster of differentiation 147 (CD147) is a tumor-associated membrane antigen overexpressed in cancer cells. Ab-based drugs targeting CD147 have achieved inadequate clinical benefits for liver cancer due to side effects. Here, by using glycoengineering and hypoxia-activation strategies, we developed a conditional Ab-dependent cellular cytotoxicity (ADCC)-enhanced humanized anti-CD147 Ab, HcHAb18-azo-PEG5000 (HAP18). Afucosylated ADCC-enhanced HcHAb18 Ab was produced by a fed-batch cell culture system. Azobenzene (Azo)-linked PEG5000 conjugation endowed HAP18 Ab with features of hypoxia-responsive delivery and selective targeting. HAP18 Ab potently inhibits the migration, invasion, and matrix metalloproteinase secretion, triggers the cytotoxicity and apoptosis of cancer cells, and induces ADCC, complement-dependent cytotoxicity, and Ab-dependent cellular phagocytosis under hypoxia. In xenograft mouse models, HAP18 Ab selectively targets hypoxic liver cancer tissues but not normal organs or tissues, and has potent tumor-inhibiting effects. HAP18 Ab caused negligible side effects and exhibited superior pharmacokinetics compared to those of parent HcHAb18 Ab. The hypoxia-activated ADCC-enhanced humanized HAP18 Ab safely confers therapeutic efficacy against liver cancer with improved selectivity. This study highlights that hypoxia activation is a promising strategy for improving the tumor targeting potential of anti-CD147 Ab drugs.

5.
Int J Biol Sci ; 20(5): 1634-1651, 2024.
Article in English | MEDLINE | ID: mdl-38481819

ABSTRACT

Background: Hypoxia induces hepatocellular carcinoma (HCC) malignancies; yet it also offers treatment opportunities, exemplified by developing hypoxia-activated prodrugs (HAPs). Although HAP TH-302 combined with therapeutic antibody (Ab) has synergistic effects, the clinical benefits are limited by the on-target off-tumor toxicity of Ab. Here, we sought to develop a hypoxia-activated anti-M2 splice isoform of pyruvate kinase (PKM2) Ab combined with TH-302 for potentiated targeting therapy. Methods: Codon-optimized and hypoxia-activation strategies were used to develop H103 Ab-azo-PEG5k (HAP103) Ab. Hypoxia-activated HAP103 Ab was characterized, and hypoxia-dependent antitumor and immune activities were evaluated. Selective imaging and targeting therapy with HAP103 Ab were assessed in HCC-xenografted mouse models. Targeting selectivity, systemic toxicity, and synergistic therapeutic efficacy of HAP103 Ab with TH-302 were evaluated. Results: Human full-length H103 Ab was produced in a large-scale bioreactor. Azobenzene (azo)-linked PEG5k conjugation endowed HAP103 Ab with hypoxia-activated targeting features. Conditional HAP103 Ab effectively inhibited HCC cell growth, enhanced apoptosis, and induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) functions. Analysis of HCC-xenografted mouse models showed that HAP103 Ab selectively targeted hypoxic HCC tissues and induced potent tumor-inhibitory activity either alone or in combination with TH-302. Besides the synergistic effects, HAP103 Ab had negligible side effects when compared to parent H103 Ab. Conclusion: The hypoxia-activated anti-PKM2 Ab safely confers a strong inhibitory effect on HCC with improved selectivity. This provides a promising strategy to overcome the on-target off-tumor toxicity of Ab therapeutics; and highlights an advanced approach to precisely kill HCC in combination with HAP TH-302.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nitroimidazoles , Phosphoramide Mustards , Prodrugs , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Prodrugs/therapeutic use , Prodrugs/pharmacology , Cell Hypoxia/physiology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Hypoxia
6.
Nat Genet ; 56(3): 442-457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361033

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable immune and metabolic heterogeneity. Here we perform genomic, transcriptomic, proteomic, metabolomic and spatial transcriptomic and metabolomic analyses on 100 patients with ccRCC from the Tongji Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes including De-clear cell differentiated (DCCD)-ccRCC, a subtype with distinctive metabolic features. DCCD cancer cells are characterized by fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake capability and a high proliferation rate, leading to poor prognosis. Using single-cell and spatial trajectory analysis, we demonstrate that DCCD is a common mode of ccRCC progression. Even among stage I patients, DCCD is associated with worse outcomes and higher recurrence rate, suggesting that it cannot be cured by nephrectomy alone. Our study also suggests a treatment strategy based on subtype-specific immune cell infiltration that could guide the clinical management of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Multiomics , Proteomics , Metabolic Reprogramming , Dicyclohexylcarbodiimide , Disease Progression , Prognosis
7.
Adv Mater ; 36(10): e2210144, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36730098

ABSTRACT

Ischemic stroke (IS) is one of the most common causes of disability and death. Thrombolysis and neuroprotection are two current major therapeutic strategies to overcome ischemic and reperfusion damage. In this work, a novel peptide-templated manganese dioxide nanozyme (PNzyme/MnO2 ) is designed that integrates the thrombolytic activity of functional peptides with the reactive oxygen species scavenging ability of nanozymes. Through self-assembled polypeptides that contain multiple functional motifs, the novel peptide-templated nanozyme is able to bind fibrin in the thrombus, cross the blood-brain barrier, and finally accumulate in the ischemic neuronal tissues, where the thrombolytic motif is "switched-on" by the action of thrombin. In mice and rat IS models, the PNzyme/MnO2 prolongs the blood-circulation time and exhibits strong thrombolytic action, and reduces the ischemic damages in brain tissues. Moreover, this peptide-templated nanozyme also effectively inhibits the activation of astrocytes and the secretion of proinflammatory cytokines. These data indicate that the rationally designed PNzyme/MnO2 nanozyme exerts both thrombolytic and neuroprotective actions. Giving its long half-life in the blood and ability to target brain thrombi, the biocompatible nanozyme may serve as a novel therapeutic agent to improve the efficacy and prevent secondary thrombosis during the treatment of IS.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Stroke , Rats , Mice , Animals , Manganese Compounds/pharmacology , Thrombin , Neuroprotection , Oxides , Fibrinolytic Agents/therapeutic use , Ischemia , Peptides/pharmacology , Peptides/therapeutic use , Stroke/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
8.
Int Urol Nephrol ; 56(3): 923-934, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37882969

ABSTRACT

BACKGROUND: The crosstalk between genomic alterations and metabolic dysregulation in bladder cancer is largely unknown. A deep understanding of the interactions between cancer drivers and cancer metabolic changes will provide novel opportunities for targeted therapeutic strategies. METHODS: Three primary bladder cancer specimens with paired normal tissues or blood samples were subjected to whole-exome sequencing, DNA methylation array and whole-transcriptome sequencing by next-generation sequencing technology. We applied the methods to multi-omics data combining the Cancer Genome Atlas (TCGA) bladder cancer samples, including somatic mutation, DNA copy number, DNA methylation and gene expression profile for validation. RESULTS: We identified 34 mutated cancer driver genes in bladder cancer. KDM6A was the most significantly mutated cancer driver gene. Metabolic pathways were enriched in both differentially methylated regions (DMRs) and differentially expressed genes. Twenty-nine DMRs in the TSS200 region were highly correlated with the upregulation of gene expression, and 24 DMRs in the genome were highly correlated with the downregulation of gene expression. A total of 201 genes had highly correlated DNA methylation and expression. Thirty-four genes, including the known metabolic genes CXXC5, PRR5, ABCB8 and BAHD1, were further validated in the TCGA cohort. Multi-omics alterations identified two new candidate driver genes, WIPI2 and GFM2, that warrant future studies. CONCLUSIONS: This study provides a comprehensive and systematic analysis, focusing on identifying key regulatory factors that may lead to cancer metabolic heterogeneity. Further understanding and verification of the cancer genes driving metabolic reprogramming and their role in the progression of bladder cancer will help to identify new therapeutic targets.


Subject(s)
Multiomics , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , DNA Methylation , Transcriptome , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism
9.
Adv Healthc Mater ; 13(4): e2302395, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947303

ABSTRACT

Ferrofluidic robots with excellent deformability and controllability have been intensively studied recently. However, most of these studies are in vitro and the use of ferrofluids for in vivo medicinal applications remains a big challenge. The application of ferrofluidic robots to the body requires the solution of many key problems. In this study, biocompatibility, controllability, and tumor-killing efficacy are considered when creating a ferrofluid-based millirobot for in vivo tumor-targeted therapy. For biocompatibility problems, corn oil is used specifically for the ferrofluid robot. In addition, a control system is built that enables a 3D magnetic drive to be implemented in complex biological media. Using the photothermal conversion property of 1064 nm, the ferrofluid robot can kill tumor cells in vitro; inhibit tumor volume, destroy the tumor interstitium, increase tumor cell apoptosis, and inhibit tumor cell proliferation in vivo. This study provides a reference for ferrofluid-based millirobots to achieve targeted therapies in vivo.


Subject(s)
Hyperthermia, Induced , Neoplasms , Humans , Photothermal Therapy , Neoplasms/therapy , Neoplasms/pathology , Phototherapy
10.
Int J Hyperthermia ; 40(1): 2268892, 2023.
Article in English | MEDLINE | ID: mdl-37927295

ABSTRACT

OBJECTIVES: We aimed to evaluate the effect of intratumoral perfusion on microwave ablation (MWA) area in hepatocellular carcinoma (HCC). METHODS: Patients who underwent curative MWA for HCC between October 2013 and May 2015 were enrolled. Three days before MWA, contrast-enhanced ultrasound (CEUS) was performed to illustrate the perfusion characteristics of the target lesion. Using the Sonoliver quantification software, time-intensity curves of dynamic CEUS were obtained, and quantitative parameters were extracted. Two microwave antennae were inserted into the center of the tumor and MWA was performed with a continuous power output of 50 W for 5 min. A second CEUS was performed to measure the size of the ablated region. Thereafter, an additional MWA procedure was performed until complete ablation with a 5-10-mm safety margin was achieved. RESULTS: A total of 38 patients who underwent curative MWA for 39 HCC nodules were enrolled. The mean age was 57 years (34-80 years), and the median maximum diameter of the HCC was 3.4 cm (interquartile range, 2-6.8 cm). Time-intensity curves were obtained and the area under the curve (AUC) was selected as a parameter for intratumoral perfusion. The AUC was inversely and linearly correlated with the size of the MWA area, including long- and short-axis diameters and ablation volume. A 1,000-dB·s change in the AUC produced an average change of 1.17 ± 0.44 mm, 0.725 ± 0.355 mm, and 2.4995 ± 0.6575 cm³ in the long- and short-axis diameters and ablation volume, respectively. CONCLUSIONS: The intratumoral perfusion of HCC was inversely correlated with MWA area size.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Radiofrequency Ablation , Humans , Middle Aged , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Microwaves/therapeutic use , Radiofrequency Ablation/methods , Perfusion
11.
Cancer Res ; 83(23): 3920-3939, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37729394

ABSTRACT

Fatty acid metabolism reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Increased lipid storage supports ccRCC progression, highlighting the importance of understanding the molecular mechanisms driving altered fatty acid synthesis in tumors. Here, we identified that malonyl-CoA decarboxylase (MLYCD), a key regulator of fatty acid anabolism, was downregulated in ccRCC, and low expression correlated with poor prognosis in patients. Restoring MLYCD expression in ccRCC cells decreased the content of malonyl CoA, which blocked de novo fatty acid synthesis and promoted fatty acid translocation into mitochondria for oxidation. Inhibition of lipid droplet accumulation induced by MLYCD-mediated fatty acid oxidation disrupted endoplasmic reticulum and mitochondrial homeostasis, increased reactive oxygen species levels, and induced ferroptosis. Moreover, overexpressing MLYCD reduced tumor growth and reversed resistance to sunitinib in vitro and in vivo. Mechanistically, HIF2α inhibited MLYCD translation by upregulating expression of eIF4G3 microexons. Together, this study demonstrates that fatty acid catabolism mediated by MLYCD disrupts lipid homeostasis to repress ccRCC progression. Activating MLYCD-mediated fatty acid metabolism could be a promising therapeutic strategy for treating ccRCC. SIGNIFICANCE: MLYCD deficiency facilitates fatty acid synthesis and lipid droplet accumulation to drive progression of renal cell carcinoma, indicating inducing MYLCD as a potential approach to reprogram fatty acid metabolism in kidney cancer.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Lipid Metabolism , Fatty Acids/metabolism
12.
J Sci Food Agric ; 103(15): 7434-7444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37395138

ABSTRACT

BACKGROUND: Baijiu is a very complex system and its flavor substances are endogenous, influenced by raw materials, starter, production process, production region and other factors. The production region directly affects the composition of flavor substances and quality of baijiu. However, identification of baijiu region is challenging because the corresponding relationship between the production region and baijiu quality is not clear, and the identification of regionalmarkers is indeterminate. In this study, the differences in volatile components of sauce-aroma style baijiu from four representative regions were investigated. RESULTS: A total of 94 volatile compounds were identified in samples tested. Additionally, it was verified that 35 potential flavor substances had important contributions to the aroma of sauce-aroma style baijiu. Meanwhile, nine potential regionalmarkers were screened through multivariate analysis. Further, based on distribution of volatile compounds and the results of sensory evaluation combined with multivariate analysis, a molecular matrix and correlation network were established according to the results of addition experiments, which showed that six substances had a significant impact on the flavor of the tested samples. CONCLUSION: Six key flavor substances (ethyl octanoate, ethyl 2-methylpropanoate, propyl acetate, ethyl heptanoate, 2-nonanone and butyl hexanoate) were considered as important regionalmarkers to effectively identify the production region of sauce-aroma style baijiu. © 2023 Society of Chemical Industry.


Subject(s)
Food , Odorants , Odorants/analysis , Multivariate Analysis
13.
Genes (Basel) ; 14(3)2023 03 15.
Article in English | MEDLINE | ID: mdl-36980995

ABSTRACT

We carried out whole transcriptome sequencing (WTS) on the tumor and the matching adjacent normal tissues from five patients having Xp11 translocation renal cell carcinoma (RCC). This was performed in terms of obtaining more understanding of the genomic panorama and molecular basis of this cancer. To examine gene-regulatory networks in XP11 translocation RCC, variance expression analysis was carried out, followed by functional enrichment analysis. Gene Expression Omnibus (GEO) of Xp11 translocation RCC data was used to validate the results. As per inclusion criteria, a total of 1886 differentially expressed mRNAs (DEmRNAs), 56 differentially expressed miRNAs (DEmiRNAs), 223 differentially expressed lncRNAs (DElncRNAs), and 1764 differentially expressed circRNAs (DEcircRNAs) were found. KEGG enrichment study of DEmiRNA, DElncRNA, and DEcircRNA target genes identified the function of protein processing in the endoplasmic reticulum, lysosome, and neutrophil-mediated immunity. Three subnetwork modules integrated from the PPI network also revealed the genes involved in protein processing in the endoplasmic reticulum, lysosome, and protein degradation processes, which may regulate the Xp11 translocation RCC process. The ceRNA complex network was created by Cytoscape, which included three upregulated circRNAs, five upregulated lncRNAs, 24 upregulated mRNAs, and two downregulated miRNAs (hsa-let-7d-5p and hsa-miR-433-3p). The genes as a prominent component of the complex ceRNA network may be key factors in the pathogenesis of Xp11 translocation RCC. Our findings clarified the genomic and transcriptional complexity of Xp11 translocation RCC while also pointing to possible new targets for Xp11 translocation RCC characterization.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Circular/genetics , RNA, Messenger/genetics , Transcriptome/genetics , Exome Sequencing , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology
14.
Micromachines (Basel) ; 14(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838121

ABSTRACT

Soft-bodied robots driven by external fields have better environmental adaptability, extending their applications. Nature also provides lots of inspiration for shape-morphing robot development, for example, larvae and jellyfish. This paper presents magnetically propelled hydrogel-based millirobots with volume changeability. The millirobot can be imaged in real time in a completely enclosed space with an ultrasound imaging system. Firstly, a custom-designed magnetic generating system with six square coils was introduced to generate a uniform field to propel the robot. The robot was fabricated using hydrogel with a thickness of around 300 µm. After programmable magnetization, the robot could change its shape and move using the rotating magnetic field. With the near-infrared illumination, the robot could shrink and could recover when the illumination stopped. Even when the robot shrank, it could be propelled by the external field, showing its potential usage in complex environments. Moreover, the posture information of the robot including the position and shape could be obtained in real time using ultrasound image technology.

15.
Nat Commun ; 13(1): 6740, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347860

ABSTRACT

Single-cell sequencing technologies have noteworthily improved our understanding of the genetic map and molecular characteristics of bladder cancer (BC). Here we identify CD39 as a potential therapeutic target for BC via single-cell transcriptome analysis. In a subcutaneous tumor model and orthotopic bladder cancer model, inhibition of CD39 (CD39i) by sodium polyoxotungstate is able to limit the growth of BC and improve the overall survival of tumor-bearing mice. Via single cell RNA sequencing, we find that CD39i increase the intratumor NK cells, conventional type 1 dendritic cells (cDC1) and CD8 + T cells and decrease the Treg abundance. The antitumor effect and reprogramming of the tumor microenvironment are blockaded in both the NK cells depletion model and the cDC1-deficient Batf3-/- model. In addition, a significant synergistic effect is observed between CD39i and cisplatin, but the CD39i + anti-PD-L1 (or anti-PD1) strategy does not show any synergistic effects in the BC model. Our results confirm that CD39 is a potential target for the immune therapy of BC.


Subject(s)
Tumor Microenvironment , Urinary Bladder Neoplasms , Mice , Animals , Urinary Bladder Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Dendritic Cells , Killer Cells, Natural , Cell Line, Tumor
16.
Foods ; 11(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36230035

ABSTRACT

Baijiu is the national liquor of China, which has lasted in China for more than 2000 years. Abundant raw materials, multi-strain co-fermentation, and complex processes make the secrets of baijiu flavor and taste still not fully explored. Acid substances not only have a great influence on the flavor and taste of baijiu, but also have certain functions. Therefore, this paper provides a systematic review for the reported acid substances, especially for their contribution to the flavor and functional quality of baijiu. Based on previous studies, this paper puts forward a conjecture, a suggestion, and a point of view, namely: the conjecture of "whether acid substances can be used as 'key factor' for baijiu quality "; the suggestion of "the focus of research on acid substances in baijiu should be transferred to evaluating their contribution to the taste of baijiu"; and the view of "acid substances are 'regulators' in the fermentation process of baijiu". It is worth thinking about whether acid substances can be used as the key factors of baijiu to be studied and confirmed by practice in the future. It is hoped that the systematic review of acid substances in baijiu in this paper can contribute to further in-depth and systematic research on baijiu by researchers in the future.

17.
Cyborg Bionic Syst ; 2022: 9842349, 2022.
Article in English | MEDLINE | ID: mdl-36285314

ABSTRACT

Cell segmentation and counting play a very important role in the medical field. The diagnosis of many diseases relies heavily on the kind and number of cells in the blood. convolution neural network achieves encouraging results on image segmentation. However, this data-driven method requires a large number of annotations and can be a time-consuming and expensive process, prone to human error. In this paper, we present a novel frame to segment and count cells without too many manually annotated cell images. Before training, we generated the cell image labels on single-kind cell images using traditional algorithms. These images were then used to form the train set with the label. Different train sets composed of different kinds of cell images are presented to the segmentation model to update its parameters. Finally, the pretrained U-Net model is transferred to segment the mixed cell images using a small dataset of manually labeled mixed cell images. To better evaluate the effectiveness of the proposed method, we design and train a new automatic cell segmentation and count framework. The test results and analyses show that the segmentation and count performance of the framework trained by the proposed method equal the model trained by large amounts of annotated mixed cell images.

18.
Med Phys ; 49(9): 5787-5798, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35866492

ABSTRACT

PURPOSE: Breast cancer is the most commonly occurring cancer worldwide. The ultrasound reflectivity imaging technique can be used to obtain breast ultrasound (BUS) images, which can be used to classify benign and malignant tumors. However, the classification is subjective and dependent on the experience and skill of operators and doctors. The automatic classification method can assist doctors and improve the objectivity, but current convolution neural network (CNN) is not good at learning global features and vision transformer (ViT) is not good at extraction local features. In this study, we proposed a visual geometry group attention ViT (VGGA-ViT) network to overcome their disadvantages. METHODS: In the proposed method, we used a CNN module to extract the local features and employed a ViT module to learn the global relationship among different regions and enhance the relevant local features. The CNN module was named the VGGA module. It was composed of a VGG backbone, a feature extraction fully connected layer, and a squeeze-and-excitation block. Both the VGG backbone and the ViT module were pretrained on the ImageNet dataset and retrained using BUS samples in this study. Two BUS datasets were employed for validation. RESULTS: Cross-validation was conducted on two BUS datasets. For the Dataset A, the proposed VGGA-ViT network achieved high accuracy (88.71 ± $\ \pm \ $ 1.55%), recall (90.73 ± $\ \pm \ $ 1.57%), specificity (85.58 ± $\ \pm \ $ 3.35%), precision (90.77 ± $\ \pm \ $ 1.98%), F1 score (90.73 ± $\ \pm \ $ 1.24%), and Matthews correlation coefficient (MCC) (76.34 ± 7 $\ \pm \ 7$ 3.29%), which were better than those of all compared previous networks in this study. The Dataset B was used as a separate test set, the test results showed that the VGGA-ViT had highest accuracy (81.72 ± $\ \pm \ $ 2.99%), recall (64.45 ± $\ \pm \ $ 2.96%), specificity (90.28 ± $\ \pm \ $ 3.51%), precision (77.08 ± $\ \pm \ $ 7.21%), F1 score (70.11 ± $\ \pm \ $ 4.25%), and MCC (57.64 ± $\ \pm \ $ 6.88%). CONCLUSIONS: In this study, we proposed the VGGA-ViT for the BUS classification, which was good at learning both local and global features. The proposed network achieved higher accuracy than the compared previous methods.


Subject(s)
Breast Neoplasms , Image Processing, Computer-Assisted , Attention , Breast Neoplasms/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Ultrasonography, Mammary
19.
Nutrients ; 14(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35405939

ABSTRACT

(1) Background: Increasing evidence indicates that lipid metabolism may influence the concentration of prostate-specific antigen (PSA). However, the association between triglycerides and PSA remains unclear and complicated. Hence, we evaluated the correlation between triglycerides and PSA based on the U.S. National Health and Nutrition Examination Survey (NHANES) database. (2) Methods: A total of 2910 participants out of 41,156 participants fit into our study after conducting the screening from the 2003 to 2010 NHANES survey. Serum triglycerides were the independent variable of our study, and PSA was the dependent variable; (3) Results: In our study, the average age of chosen participants was 59.7 years (±12.7). After adjusting for covariates, the result indicated that for each additional unit of serum triglyceride (mg/dL), the PSA concentrations were reduced by 0.0043 ng/mL (-0.0082, -0.0005) with a statistical difference. Furthermore, we used machine learning of the XGBoost model to determine the relative importance of selected variables as well as constructed a smooth curve based on the fully adjusted model to investigate the possible linear relationship between the triglyceride and PSA concentrations. (4) Conclusions: The serum triglyceride is independently and negatively correlated with PSA among American males, which may make it hard to detect asymptomatic prostate cancer and diagnose at an advance stage with higher triglycerides due to detection bias.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Humans , Male , Mass Screening , Middle Aged , Nutrition Surveys , Prostatic Neoplasms/prevention & control , Triglycerides , United States/epidemiology
20.
ChemSusChem ; 15(13): e202200193, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35333002

ABSTRACT

Designing highly efficient and low-cost catalysts for conversion of renewable biomass into high value-added chemicals and biofuels is important and challenging. Herein, a non-noble Ni-Mn bifunctional catalyst supported on activated carbon (Ni-Mn/AC) was developed by an incipient wetness impregnation method. The catalyst was found to be economic and efficient for the selective hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural (5-HMF) to 2,5-dimethylfuran (2,5-DMF). The optimal Ni-Mn/AC (Ni/Mn=3) catalyst achieved 98.5 % 2,5-DMF yield with 100 % conversion of 5-HMF under mild reaction conditions of 180 °C, 2.0 MPa H2 for 4 h. Furthermore, the catalyst exhibited outstanding reusability and could be recycled eight times without loss of activity. The addition of Mn not only enhanced the reactivity of 5-HMF but also resulted in the dominant reaction pathway shift from the hydrogenation of the C=O bond to the hydrogenolysis of C-OH bond, which was attributed to the synergy of highly dispersed Ni metallic nanoparticles and moderate Lewis acid sites from MnOx as revealed by detailed characterizations.


Subject(s)
Charcoal , Furaldehyde , Catalysis , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , Furans
SELECTION OF CITATIONS
SEARCH DETAIL
...