Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(41): 9894-9911, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37830402

ABSTRACT

Breast cancer has overtaken lung cancer to rank as the top malignant tumor in terms of incidence. Herein, a gold nanostar (denoted as AuNS) is used for loading disulfide-coupled camptothecin-fluorophore prodrugs (denoted as CPT-SS-FL) to form a nanocomposite of AuNS@CPT-SS-FL (denoted as AS), which, in turn, is further encapsulated with hyaluronic acid (HA) to give the final nanoplatform of AuNS@CPT-SS-FL@HA (denoted as ASH). ASH effectively carries the prodrug and targets the CD44 receptor on the surface of tumor cells. The endogenously overexpressed glutathione (GSH) in tumor cells breaks the disulfide bond to activate the prodrug and release the radiosensitizer drug camptothecin (CPT) and the fluorescence imaging reagent rhodamine derivative as a fluorophore (FL). The released FL can track the precise release position of the radiosensitizer camptothecin in tumor cells in real time. The AuNS has strong X-ray absorption and deposition ability due to the high atomic coefficient of elemental Au (Z = 79). At the same time, the AuNS can alleviate the tumor microenvironment (TME) hypoxia through its mild photothermal therapy (PTT). Therefore, through the multiple radiosensitizing effects of GSH depletion, the high atomic coefficient of Au, and hypoxia alleviation, accompanied by the radiosensitizer camptothecin, the designed ASH nanoplatform can effectively induce strong immunogenic cell death (ICD) at the tumor site via radiosensitizing therapy combined with PTT. This work provides a new way of constructing a structurally compact and highly functionalized hierarchical system toward efficient breast cancer treatment through ameliorating the TME with multiple modalities.


Subject(s)
Breast Neoplasms , Prodrugs , Humans , Female , Prodrugs/chemistry , Breast Neoplasms/drug therapy , Hyaluronic Acid/chemistry , Gold/pharmacology , Gold/chemistry , Camptothecin/pharmacology , Camptothecin/therapeutic use , Camptothecin/chemistry , Glutathione/metabolism , Disulfides/chemistry , Hypoxia , Tumor Microenvironment
2.
J Nanobiotechnology ; 21(1): 18, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36650517

ABSTRACT

The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.


Subject(s)
Curcumin , Metal-Organic Frameworks , Osteoarthritis , Humans , Curcumin/pharmacology , Chondrocytes/metabolism , RNA, Small Interfering/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Inflammation/metabolism , Hydrogen-Ion Concentration
3.
ACS Appl Mater Interfaces ; 15(2): 2602-2616, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36622638

ABSTRACT

To improve the efficiency of radiation therapy (RT) for breast cancer, a designable multifunctional core-shell nanocomposite of FeP@Pt is constructed using Fe(III)-polydopamine (denoted as FeP) as the core and platinum particles (Pt) as the shell. The hybrid structure is further covered with hyaluronic acid (HA) to give the final nanoplatform of FeP@Pt@HA (denoted as FPH). FPH exhibits good biological stability, prolongs blood circulation time, and is simultaneously endowed with tumor-targeting ability. With CD44-mediated endocytosis of HA, FPH can be internalized by cancer cells and activated by the tumor microenvironment (TME). The redox reaction between Fe3+ in FPH and endogenous glutathione (GSH) or/and hydrogen peroxide (H2O2) initiates ferroptosis therapy by promoting GSH exhaustion and •OH generation. Moreover, FPH has excellent photothermal conversion efficiency and can absorb near-infrared laser energy to promote the above catalytic reaction as well as to achieve photothermal therapy (PTT). Ferroptosis therapy and PTT are further accompanied by the catalase activity of Pt nanoshells to accelerate O2 production and the high X-ray attenuation coefficient of Pt for enhanced radiotherapy (RT). Apart from the therapeutic modalities, FPH exhibits dual-modal contrast enhancement in infrared (IR) thermal imaging and computed tomography (CT) imaging, offering potential in imaging-guided cancer therapy. In this article, the nanoplatform can remodel the TME through the production of O2, GSH- and H2O2-depletion, coenhanced PTT, ferroptosis, and RT. This multimodal nanoplatform is anticipated to shed light on the design of TME-activatable materials to enhance the synergism of treatment results and enable the establishment of efficient nanomedicine.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Tumor Microenvironment , Female , Humans , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Cell Line, Tumor , Combined Modality Therapy/methods , Ferric Compounds/therapeutic use , Hydrogen Peroxide , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/therapy , Tumor Microenvironment/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
4.
ACS Biomater Sci Eng ; 8(8): 3361-3376, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35819069

ABSTRACT

Rheumatoid arthritis (RA) is an inflammatory type of arthritis that causes joint pain and damage. The inflammatory cell infiltration (e.g., M1 macrophages), the poor O2 supply at the joint, and the excess reactive oxygen species (ROS)-induced oxidative injury are the main causes of RA. We herein report a polydopamine (PDA)-coated CeO2-dopped zeolitic imidazolate framework-8 (ZIF-8) nanocomposite CeO2-ZIF-8@PDA (denoted as CZP) that can synergistically treat RA. Under near-infrared (NIR) light irradiation, PDA efficiently scavenges ROS and results in an increased temperature in the inflamed area because of its good light-to-heat conversion efficiency. The rise of temperature serves to obliterate hyper-proliferative inflammatory cells accumulated in the diseased area while vastly promoting the collapse of the acidic-responsive skeleton of ZIF-8 to release the encapsulated CeO2. The released CeO2 exerts its catalase-like activity to relieve hypoxia by generating oxygen via the decomposition of H2O2 highly expressed in the inflammatory sites. Thus, the constructed CZP composite can treat RA through NIR-photothermal/ROS-scavenging/oxygen-enriched combinative therapy and show good regression of pro-inflammatory cytokines and hypoxia-inducible factor-1α (HIF-1α) in vitro and promising therapeutic effect on RA in rat models. The multimodal nano-platform reported herein is expected to shed light on the design of synergistic therapeutic nanomedicine for effective RA therapy.


Subject(s)
Arthritis, Rheumatoid , Zeolites , Animals , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/therapy , Hydrogen Peroxide/adverse effects , Hydrogen-Ion Concentration , Indoles , Oxygen/adverse effects , Polymers , Rats , Reactive Oxygen Species/adverse effects
5.
J Nanobiotechnology ; 20(1): 212, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35524270

ABSTRACT

A multifunctional nanoplatform with core-shell structure was constructed in one-pot for the synergistic photothermal, photodynamic, and chemotherapy against breast cancer. In the presence of gambogic acid (GA) as the heat-shock protein 90 (HSP90) inhibitor and the gold nanostars (AuNS) as the photothermal reagent, the assembly of Zr4+ with tetrakis (4-carboxyphenyl) porphyrin (TCPP) gave rise to the nanocomposite AuNS@ZrTCPP-GA (AZG), which in turn, further coated with PEGylated liposome (LP) to enhance the stability and biocompatibility, and consequently the antitumor effect of the particle. Upon cellular uptake, the nanoscale metal - organic framework (NMOF) of ZrTCPP in the resulted AuNS@ZrTCPP-GA@LP (AZGL) could be slowly degraded in the weak acidic tumor microenvironment to release AuNS, Zr4+, TCPP, and GA to exert the synergistic treatment of tumors via the combination of AuNS-mediated mild photothermal therapy (PTT) and TCPP-mediated photodynamic therapy (PDT). The introduction of GA serves to reduce the thermal resistance of the cell to re-sensitize PTT and the constructed nanoplatform demonstrated remarkable anti-tumor activity in vitro and in vivo. Our work highlights a facile strategy to prepare a pH-dissociable nanoplatform for the effective synergistic treatment of breast cancer.


Subject(s)
Breast Neoplasms , Metal-Organic Frameworks , Nanocomposites , Photochemotherapy , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Humans , Liposomes/therapeutic use , Tumor Microenvironment , Xanthones
SELECTION OF CITATIONS
SEARCH DETAIL
...