Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(41): e2302627, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37287342

ABSTRACT

The pursuit of efficient CO2 capture materials remains an unmet challenge. Especially, meeting both high sorption capacity and fast uptake kinetics is an ongoing effort in the development of CO2 sorbents. Here, a strategy to exploit liquid-in-aerogel porous composites (LIAPCs) that allow for highly effective CO2 capture and selective CO2 /N2 separation, is reported. Interestingly, the functional liquid tetraethylenepentamine (TEPA) is partially filled into the air pockets of SiO2 aerogel with left permanent porosity. Notably, the confined liquid thickness is 10.9-19.5 nm, which can be vividly probed by the atomic force microscope and rationalized by tailoring the liquid composition and amount. LIAPCs achieve high affinity between the functional liquid and solid porous counterpart, good structure integrity, and robust thermal stability. LIAPCs exhibit superb CO2 uptake capacity (5.44 mmol g-1 , 75 °C, and 15 vol% CO2 ), fast sorption kinetics, and high amine efficiency. Furthermore, LIAPCs ensure long-term adsorption-desorption cycle stability and offer exceptional CO2 /N2 selectivity both in dry and humid conditions, with a separation factor up to 1182.68 at a humidity of 1%. This approach offers the prospect of efficient CO2 capture and gas separation, shedding light on new possibilities to make the next-generation sorption materials for CO2 utilization.

2.
Adv Sci (Weinh) ; 10(9): e2205762, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36658735

ABSTRACT

Aerogel fibers garner tremendous scientific interest due to their unique properties such as ultrahigh porosity, large specific surface area, and ultralow thermal conductivity, enabling diverse potential applications in textile, environment, energy conversion and storage, and high-tech areas. Here, the fabrication methodologies to construct the aerogel fibers starting from nanoscale building blocks are overviewed, and the spinning thermodynamics and spinning kinetics associated with each technology are revealed. The huge pool of material choices that can be assembled into aerogel fibers is discussed. Furthermore, the fascinating properties of aerogel fibers, including mechanical, thermal, sorptive, optical, and fire-retardant properties are elaborated on. Next, the nano-confining functionalization strategy for aerogel fibers is particularly highlighted, touching upon the driving force for liquid encapsulation, solid-liquid interface adhesion, and interfacial stability. In addition, emerging applications in thermal management, smart wearable fabrics, water harvest, shielding, heat transfer devices, artificial muscles, and information storage, are discussed. Last, the existing challenges in the development of aerogel fibers are pointed out and light is shed on the opportunities in this burgeoning field.

3.
Nat Commun ; 13(1): 1227, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264594

ABSTRACT

Aerogel fibers have been recognized as the rising star in the fields of thermal insulation and wearable textiles. Yet, the lack of functionalization in aerogel fibers limits their applications. Herein, we report hygroscopic holey graphene aerogel fibers (LiCl@HGAFs) with integrated functionalities of highly efficient moisture capture, heat allocation, and microwave absorption. LiCl@HGAFs realize the water sorption capacity over 4.15 g g-1, due to the high surface area and high water uptake kinetics. Moreover, the sorbent can be regenerated through both photo-thermal and electro-thermal approaches. Along with the water sorption and desorption, LiCl@HGAFs experience an efficient heat transfer process, with a heat storage capacity of 6.93 kJ g-1. The coefficient of performance in the heating and cooling mode can reach 1.72 and 0.70, respectively. Notably, with the entrapped water, LiCl@HGAFs exhibit broad microwave absorption with a bandwidth of 9.69 GHz, good impedance matching, and a high attenuation constant of 585. In light of these findings, the multifunctional LiCl@HGAFs open an avenue for applications in water harvest, heat allocation, and microwave absorption. This strategy also suggests the possibility to functionalize aerogel fibers towards even broader applications.

4.
Adv Mater ; 33(52): e2104851, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34623698

ABSTRACT

Composite materials can provide remarkable improvements over the individual constituents. Especially, with a liquid component introduced into a solid porous host, solid-liquid host-guest composites have recently come to the forefront with exceptional functions that promise them for a wealth of applications. Combining the unprecedented dynamic, transparent, omniphobic, self-healing, diffusive and adaptive nature of functional liquid with inherent solid host's property, solid-liquid host-guest composites can realize the ease of fabrication, long-term stability, and a broad spectrum of enhanced properties, which cannot be fully met by conventional solid-solid composites or liquid-liquid composites. This review presents the state-of-the-art progress in solid-liquid host-guest composites. Initially, the concept, classification, design strategy, as well as fabrication methods as a path forward to develop the composites are unraveled, and further it is elaborated on how the functionality of porous solid and functional liquid can be harnessed to create composites with a broad range of unique properties, especially, the optical, thermal, electric, mechanical, sorption, and separation properties. With these fascinating properties, a myriad of emerging applications such as optical devices, thermal management, electromagnetic-interference shielding, soft electronics, gas capture and release, and multiphase separations are touched upon, inspiring more frontier researches in materials science, interfacial chemistry, membrane science, engineering, and multidisciplinary. Finally, this review provides the perspective on the future directions of solid-liquid host-guest composites and assesses the challenges and opportunities ahead.

5.
Macromol Rapid Commun ; 40(17): e1900100, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31206915

ABSTRACT

Nitrogen-rich triazine-based porous organic polyamines (POPa) synthesized via a one-step polycondensation of melamine and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde is employed to synthesize Au and Pd nanoparticles well-dispersed on POPa. The as-prepared POPa-supported Au NPs and Pd NPs (AuNPs@POPa, PdNPs@POPa) with a narrow size distribution show remarkable catalytic activity for the reduction of nitrobenzene compounds and organic dyes and the Suzuki-Miyaura coupling reaction, respectively. Benefitting from POPa the AuNPs@POPa and PdNPs@POPa catalysts can be readily recovered and reused almost without loss of activity. The nitrogen-rich porous organic polyamines provide great opportunities to prepare functional metal nanocatalysts with potential in the heterogeneous catalysis field.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Nitrobenzenes/chemistry , Nitrogen/chemistry , Palladium/chemistry , Polyamines/chemistry , Catalysis , Porosity
6.
Chem Asian J ; 13(12): 1625-1631, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29668126

ABSTRACT

We demonstrated an unconventional polymerization route to synthesize hydrophilic fluorescent organic nanoparticles (FONs) for multicolor cellular bioimaging in this contribution. The route benefits from our unexpected discovery of a rapid polymerization reaction between 1,6-hexanediol dipropiolate and 2,4,6-triazide-1,3,5-triazine under the catalysis of N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA). Interestingly, the 2,4,6-triazide-1,3,5-triazine and PMDETA system can also induce rapid free radical polymerization at room temperature. The as-prepared FONs exhibited promising water solubility and stability with an average diameter of 20 nm. The excitation wavelength-dependent fluorescent properties endow the FONs with blue, yellow, and red fluorescent emission under UV, blue, and green excitation, respectively. The cytotoxicity of FONs was investigated by using a Cell Counting Kit (CCK-8) assay, which indicated good biocompatiblity. More importantly, the cell uptake experiment verified the FONs were excellent fluorescent nanoprobes for multicolor cellular bioimaging. Therefore, this unconventional route provides a novel fabrication strategy of highly hydrophilic FONs for biomedical applications.


Subject(s)
Cells/metabolism , Color , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Optical Imaging/methods , Polymerization , Cell Line, Tumor , Cell Survival , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacokinetics , Humans , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...