Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(2): 113763, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38358890

ABSTRACT

The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.


Subject(s)
Arabidopsis , Mebendazole , Cytokinins , Ethylenes , Indoleacetic Acids
2.
Commun Biol ; 6(1): 1098, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898666

ABSTRACT

AlphaFold is making great progress in protein structure prediction, not only for single-chain proteins but also for multi-chain protein complexes. When using AlphaFold-Multimer to predict protein‒protein complexes, we observed some unusual structures in which chains are looped around each other to form topologically intertwining links at the interface. Based on physical principles, such topological links should generally not exist in native protein complex structures unless covalent modifications of residues are involved. Although it is well known and has been well studied that protein structures may have topologically complex shapes such as knots and links, existing methods are hampered by the chain closure problem and show poor performance in identifying topologically linked structures in protein‒protein complexes. Therefore, we address the chain closure problem by using sliding windows from a local perspective and propose an algorithm to measure the topological-geometric features that can be used to identify topologically linked structures. An application of the method to AlphaFold-Multimer-predicted protein complex structures finds that approximately 1.72% of the predicted structures contain topological links. The method presented in this work will facilitate the computational study of protein‒protein interactions and help further improve the structural prediction of multi-chain protein complexes.


Subject(s)
Algorithms , Proteins , Proteins/metabolism
3.
Cell ; 186(15): 3196-3207.e17, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37369204

ABSTRACT

Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.


Subject(s)
Phosphoric Monoester Hydrolases , Phytophthora , Phosphoric Monoester Hydrolases/metabolism , Proteins/metabolism , Phytophthora/chemistry , Phytophthora/metabolism , Plants/metabolism , Protein Processing, Post-Translational , Protein Phosphatase 2/metabolism , Plant Diseases
4.
RSC Adv ; 13(7): 4263-4274, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36760301

ABSTRACT

Protein tyrosine phosphatase SHP2 is a key regulator modulating several signaling pathways. The oncogenic mutation E76K in SHP2 releases the enzyme from an autoinhibited, closed conformation into an active, open conformation. Here, we investigated the conformational dynamics of SHP2 and the effect of the E76K mutation on its conformational ensemble via extensive molecular dynamics (MD) and metadynamics (MetaD) simulations. Our simulations provide atomistic details on how the E76K mutated SHP2 prefers the open state and also reveal that the transition between the closed and the open states is highly collective. Several intermediate metastable states during the conformational transition between the closed and the open states were also investigated. Understanding how the single E76K mutation induces the conformational change in SHP2 could facilitate the further design of SHP2 inhibitors.

5.
Mol Plant Pathol ; 23(10): 1565-1574, 2022 10.
Article in English | MEDLINE | ID: mdl-35869407

ABSTRACT

Gene silencing mediated by small noncoding RNAs (sRNAs) is a fundamental gene regulation mechanism in eukaryotes that broadly governs cellular processes. It has been established that sRNAs are critical regulators of plant growth, development, and antiviral defence, while accumulating studies support positive roles of sRNAs in plant defence against bacteria and eukaryotic pathogens such as fungi and oomycetes. Emerging evidence suggests that plant sRNAs move between species and function as antimicrobial agents against nonviral parasites. Multiple plant pathosystems have been shown to involve a similar exchange of small RNAs between species. Recent analysis about extracellular sRNAs shed light on the understanding of the selection and transportation of sRNAs moving from plant to parasites. In this review, we summarize current advances regarding the function and regulatory mechanism of plant endogenous small interfering RNAs (siRNAs) in mediating plant defence against pathogen intruders including viruses, bacteria, fungi, oomycetes, and parasitic plants. Beyond that, we propose potential mechanisms behind the sorting of sRNAs moving between species and the idea that engineering siRNA-producing loci could be a useful strategy to improve disease resistance of crops.


Subject(s)
Plant Diseases , RNA, Small Untranslated , Bacteria , Fungi/genetics , Plant Diseases/microbiology , Plant Immunity/genetics , Plants/microbiology , RNA, Plant/genetics , RNA, Small Interfering/genetics
6.
BMC Urol ; 22(1): 14, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35109849

ABSTRACT

BACKGROUND: The important role of long noncoding RNAs (lncRNAs) in cancer has been demonstrated in many studies. Prostate cancer gene expression marker 1 (PCGEM1) is a lncRNA specifically expressed within the prostate and overexpressed in many cancer cells. Numerous studies have shown that PCGEM1 promotes cell proliferation, invasion and migration. However, the specific mechanism of PCGEM1 within prostate cancer (PCa) has not been elucidated. MicroRNA-506-3p (miR-506-3p) is a noncoding RNA, and studies have indicated that miR-506-3p is downregulated in prostate cancer cell lines and functions as a tumor suppressor. METHODS: The TCGA (GEPIA) database ( http://gepia.cancer-pku.cn/ ) was employed to measure PCGEM1 levels in PCa. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the PCGEM1 gene level. CCK-8 (Cell Counting Kit-8) and colony formation assays were used to detect cell proliferation, and Transwell assays were applied to assess cell invasion and migration. The interacting ability of miR-506-3p with PCGEM1 or TRIAP1 was validated through a dual-luciferase reporter assay. TRIAP1 protein expression was detected by Western blotting. RESULTS: PCGEM1 expression was increased in PCa tissues and cells. In PCa tissues, High PCGEM1 expression was associated with high Gleason score, distant metastasis and extracapsular extension. In addition, PCGEM1 knockdown inhibited PCa cell (C4-2B and PC-3) proliferation, invasion and migration. miR-506-3p may interact with PCGEM1 or TRIAP1, and the suppressive effect of PCGEM1 knockdown was reversed when TRIAP1 or a miR-506-3p inhibitor was cotransfected. CONCLUSION: PCGEM1 expression increased in PCa cells and tissues, enhancing PCa cell proliferation, migration and invasion by sponging miR-506 to upregulate TRIAP1.


Subject(s)
Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , MicroRNAs/physiology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Long Noncoding/genetics , Up-Regulation , Animals , Cell Movement , Cell Proliferation , Humans , Male , Models, Animal , Neoplasm Invasiveness , Prognosis , Tumor Cells, Cultured
7.
Dev Cell ; 56(20): 2902-2919.e8, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34626540

ABSTRACT

The Notch signaling pathway controls cell growth, differentiation, and fate decisions, and its dysregulation has been linked to various human genetic disorders and cancers. To comprehensively understand the global organization of the Notch pathway and identify potential drug targets for Notch-related diseases, we established a protein interaction landscape for the human Notch pathway. By combining and analyzing genetic and phenotypic data with bioinformatics analysis, we greatly expanded this pathway and identified many key regulators, including low-density-lipoprotein-receptor-related protein 1 (LRP1). We demonstrated that LRP1 mediates the ubiquitination chain linkage switching of Delta ligands, which further affects ligand recycling, membrane localization, and stability. LRP1 inhibition led to Notch signaling inhibition and decreased tumorigenesis in leukemia models. Our study provides a glimpse into the Notch pathway interaction network and uncovers LRP1 as one critical regulator of the Notch pathway, as well as a possible therapeutic target for Notch-related cancers.


Subject(s)
Cell Proliferation/physiology , Lipoproteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Signal Transduction/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Endocytosis/physiology , Humans , Ligands , Lipoproteins/genetics , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Mice
8.
Annu Rev Phytopathol ; 59: 265-288, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34077241

ABSTRACT

Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host-pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host-pathogen interface are discussed.


Subject(s)
Plant Diseases , Plant Immunity , Host-Pathogen Interactions/genetics , Plant Immunity/genetics , RNA Interference , RNA, Plant , Virulence
10.
Cell Res ; 31(2): 126-140, 2021 02.
Article in English | MEDLINE | ID: mdl-33420426

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic presents a global public health challenge. The viral pathogen responsible, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to the host receptor ACE2 through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. Although the role of ACE2 as a receptor for SARS-CoV-2 is clear, studies have shown that ACE2 expression is extremely low in various human tissues, especially in the respiratory tract. Thus, other host receptors and/or co-receptors that promote the entry of SARS-CoV-2 into cells of the respiratory system may exist. In this study, we found that the tyrosine-protein kinase receptor UFO (AXL) specifically interacts with the N-terminal domain of SARS-CoV-2 S. Using both a SARS-CoV-2 virus pseudotype and authentic SARS-CoV-2, we found that overexpression of AXL in HEK293T cells promotes SARS-CoV-2 entry as efficiently as overexpression of ACE2, while knocking out AXL significantly reduces SARS-CoV-2 infection in H1299 pulmonary cells and in human primary lung epithelial cells. Soluble human recombinant AXL blocks SARS-CoV-2 infection in cells expressing high levels of AXL. The AXL expression level is well correlated with SARS-CoV-2 S level in bronchoalveolar lavage fluid cells from COVID-19 patients. Taken together, our findings suggest that AXL is a novel candidate receptor for SARS-CoV-2 which may play an important role in promoting viral infection of the human respiratory system and indicate that it is a potential target for future clinical intervention strategies.


Subject(s)
COVID-19/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Respiratory Mucosa/cytology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Bronchi/cytology , Bronchi/metabolism , Cell Line , Humans , Lung/cytology , Lung/metabolism , Models, Molecular , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins/analysis , Receptor Protein-Tyrosine Kinases/analysis , Respiratory Mucosa/metabolism , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Virus Internalization , Axl Receptor Tyrosine Kinase
11.
Plant Physiol ; 182(1): 51-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31636103

ABSTRACT

Regulatory small RNAs are well known as antiviral agents, regulators of gene expression, and defenders of genome integrity in plants. Several studies over the last decade have also shown that some small RNAs are exchanged between plants and their pathogens and parasites. Naturally occurring trans-species small RNAs are used by host plants to silence mRNAs in pathogens. These gene-silencing events are thought to be detrimental to the pathogen and beneficial to the host. Conversely, trans-species small RNAs from pathogens and parasites are deployed to silence host mRNAs; these events are thought to be beneficial for the pests. The natural ability of plants to exchange small RNAs with invading eukaryotic organisms can be exploited to provide disease resistance. This review gives an overview of the current state of trans-species small RNA research in plants and discusses several outstanding questions for future research.


Subject(s)
Plants/metabolism , RNA, Plant/metabolism , Host-Pathogen Interactions , MicroRNAs/genetics , MicroRNAs/metabolism , Plants/genetics , RNA Interference , RNA, Plant/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
12.
Trends Microbiol ; 28(2): 109-117, 2020 02.
Article in English | MEDLINE | ID: mdl-31606358

ABSTRACT

RNA silencing is an essential gene-regulation mechanism in eukaryotic organisms. Guided by small RNAs (sRNAs) of 20-25 nt in length, RNA silencing broadly governs a wide range of biological processes. In addition to regulating endogenous gene expression and inhibiting viral infection, accumulating evidence suggests that sRNAs can also function as antimicrobial agents against nonviral pathogens and directly silence gene targets in invading pathogen cells. Here, we summarize current understanding of this host-induced gene silencing (HIGS) process as a defense mechanism during natural infection. Specific focuses will be on recent advancement in the sRNA executors of HIGS and their potential delivery mechanisms from the plant host to filamentous eukaryotic pathogens, including fungi and Phytophthora species. Implications of these new findings in the applications of HIGS as a tool for engineering disease resistance is discussed.


Subject(s)
Disease Resistance/genetics , Gene Silencing , Plants/genetics , RNA Interference , Fungi , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , Plant Diseases/microbiology , Plants/microbiology , RNA, Small Interfering/genetics
13.
Nat Commun ; 10(1): 642, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718497

ABSTRACT

The original version of this Article contained an error in the spelling of the author Beixin Mo, which was incorrectly given as Beixing Mo. This has now been corrected in both the PDF and HTML versions of the Article.

14.
Cell Host Microbe ; 25(1): 153-165.e5, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30595554

ABSTRACT

RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens.


Subject(s)
Arabidopsis/immunology , Disease Susceptibility/microbiology , Phytophthora/metabolism , Phytophthora/pathogenicity , Plant Diseases/immunology , RNA Interference/immunology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Gene Silencing , Genes, Reporter/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , MicroRNAs/genetics , MicroRNAs/immunology , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/metabolism , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Immunity/immunology , Plant Leaves/immunology , Plant Leaves/microbiology , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/drug effects , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Nicotiana , Verticillium , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
15.
Nat Commun ; 9(1): 5080, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30498229

ABSTRACT

Plants evolved an array of disease resistance genes (R genes) to fight pathogens. In the absence of pathogen infection, NBS-LRR genes, which comprise a major subfamily of R genes, are suppressed by a small RNA cascade involving microRNAs (miRNAs) that trigger the biogenesis of phased siRNAs (phasiRNAs) from R gene transcripts. However, whether or how R genes influence small RNA biogenesis is unknown. In this study, we isolate a mutant with global defects in the biogenesis of miRNAs and phasiRNAs in Arabidopsis thaliana and trace the defects to the over accumulation and nuclear localization of an R protein SNC1. We show that nuclear SNC1 represses the transcription of miRNA and phasiRNA loci, probably through the transcriptional corepressor TPR1. Intriguingly, nuclear SNC1 reduces the accumulation of phasiRNAs from three source R genes and concomitantly, the expression of a majority of the ~170R genes is up-regulated. Taken together, this study suggests an R gene-miRNA-phasiRNA regulatory module that amplifies plant immune responses.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , MicroRNAs/genetics , RNA, Small Interfering/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics
16.
Adv Sci (Weinh) ; 5(9): 1800640, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30250803

ABSTRACT

Identification of a few cancer driver mutation genes from a much larger number of passenger mutation genes in cancer samples remains a highly challenging task. Here, a novel method for distinguishing the driver genes from the passenger genes by effective integration of somatic mutation data and molecular interaction data using a maximal mutational impact function (MaxMIF) is presented. When evaluated on six somatic mutation datasets of Pan-Cancer and 19 datasets of different cancer types from TCGA, MaxMIF almost always significantly outperforms all the existing state-of-the-art methods in terms of predictive accuracy, sensitivity, and specificity. It recovers about 30% more known cancer genes in 500 top-ranked candidate genes than the best among the other tools evaluated. MaxMIF is also highly robust to data perturbation. Intriguingly, MaxMIF is able to identify potential cancer driver genes, with strong experimental data support. Therefore, MaxMIF can be very useful for identifying or prioritizing cancer driver genes in the increasing number of available cancer genomic data.

17.
Methods Mol Biol ; 1578: 273-283, 2017.
Article in English | MEDLINE | ID: mdl-28220433

ABSTRACT

Small non-coding RNAs (smRNAs) regulate gene expression at both transcriptional and post-transcriptional levels. Well known for their roles in development, smRNAs have emerged as important regulators of plant immunity. Upon pathogen perception, accumulation of specific smRNAs are found to be altered, presumably as a host defense response. Therefore, identification of differentially accumulated smRNAs and their target genes would provide important insight into the regulation mechanism of immune responses. Here, we describe the detailed experimental procedure using Illumina sequencing to analyze the expression profiles of smRNAs and mRNAs in Arabidopsis. We focus on a newly developed pathosystem using Phytophthora capsici as the pathogen and include the treatment of Arabidopsis leaves with pathogen-associated molecular patterns (PAMPs) of Phytophthora.


Subject(s)
Arabidopsis/parasitology , Gene Expression Profiling/methods , Phytophthora/pathogenicity , RNA, Small Untranslated/genetics , Sequence Analysis, RNA/methods , Arabidopsis/genetics , Arabidopsis/immunology , Gene Expression Regulation, Plant , Gene Regulatory Networks , Pathogen-Associated Molecular Pattern Molecules/immunology , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Immunity , RNA, Messenger/genetics , RNA, Plant/genetics
18.
Curr Biol ; 26(17): 2343-50, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27524487

ABSTRACT

During the angiosperm (flowering-plant) life cycle, double fertilization represents the hallmark between diploid and haploid generations [1]. The success of double fertilization largely depends on compatible communication between the male gametophyte (pollen tube) and the maternal tissues of the flower, culminating in precise pollen tube guidance to the female gametophyte (embryo sac) and its rupture to release sperm cells. Several important factors involved in the pollen tube reception have been identified recently [2-6], but the underlying signaling pathways are far from being understood. Here, we report that a group of female-specific small proteins, early nodulin-like proteins (ENODLs, or ENs), are required for pollen tube reception. ENs are featured with a plastocyanin-like (PCNL) domain, an arabinogalactan (AG) glycomodule, and a predicted glycosylphosphatidylinositol (GPI) anchor motif. We show that ENs are asymmetrically distributed at the plasma membrane of the synergid cells and accumulate at the filiform apparatus, where arriving pollen tubes communicate with the embryo sac. EN14 strongly and specifically interacts with the extracellular domain of the receptor-like kinase FERONIA, localized at the synergid cell surface and known to critically control pollen tube reception [6]. Wild-type pollen tubes failed to arrest growth and to rupture after entering the ovules of quintuple loss-of-function EN mutants, indicating a central role of ENs in male-female communication and pollen tube reception. Moreover, overexpression of EN15 by the endogenous promoter caused disturbed pollen tube guidance and reduced fertility. These data suggest that female-derived GPI-anchored ENODLs play an essential role in male-female communication and fertilization.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant , Pollen Tube/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/classification , Arabidopsis Proteins/metabolism , Organ Specificity , Phylogeny , Pollen Tube/growth & development , Signal Transduction
19.
Proc Natl Acad Sci U S A ; 112(18): 5850-5, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25902521

ABSTRACT

A broad range of parasites rely on the functions of effector proteins to subvert host immune response and facilitate disease development. The notorious Phytophthora pathogens evolved effectors with RNA silencing suppression activity to promote infection in plant hosts. Here we report that the Phytophthora Suppressor of RNA Silencing 1 (PSR1) can bind to an evolutionarily conserved nuclear protein containing the aspartate-glutamate-alanine-histidine-box RNA helicase domain in plants. This protein, designated PSR1-Interacting Protein 1 (PINP1), regulates the accumulation of both microRNAs and endogenous small interfering RNAs in Arabidopsis. A null mutation of PINP1 causes embryonic lethality, and silencing of PINP1 leads to developmental defects and hypersusceptibility to Phytophthora infection. These phenotypes are reminiscent of transgenic plants expressing PSR1, supporting PINP1 as a direct virulence target of PSR1. We further demonstrate that the localization of the Dicer-like 1 protein complex is impaired in the nucleus of PINP1-silenced or PSR1-expressing cells, indicating that PINP1 may facilitate small RNA processing by affecting the assembly of dicing complexes. A similar function of PINP1 homologous genes in development and immunity was also observed in Nicotiana benthamiana. These findings highlight PINP1 as a previously unidentified component of RNA silencing that regulates distinct classes of small RNAs in plants. Importantly, Phytophthora has evolved effectors to target PINP1 in order to promote infection.


Subject(s)
Arabidopsis/genetics , Arabidopsis/parasitology , Phytophthora/metabolism , RNA, Small Interfering/genetics , Alleles , Cell Nucleus/metabolism , Gene Silencing , MicroRNAs/metabolism , Phenotype , Plant Diseases/parasitology , Plants, Genetically Modified , Protein Structure, Tertiary , RNA Helicases/metabolism , RNA Interference , RNA, Plant/genetics , Nicotiana/metabolism , Virulence
20.
Curr Biol ; 23(11): 993-8, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23684977

ABSTRACT

Successful sexual reproduction in animals and plants requires communication between male and female gametes. In flowering plants, unlike in animals, eggs and sperm cells are enclosed in multicellular embryo sacs and pollen grains, respectively; guided growth of the pollen tube into the ovule is necessary for fertilization. Pollen tube guidance requires accurate perception of ovule-emitted guidance cues by the receptors in pollen tubes. Although several ovule-secreted peptides controlling pollen tube guidance have recently been identified, i.e., maize EGG APPARATUS1 (EA1), Torenia LURE1/LURE2, and Arabidopsis CRP810_1/AtLURE1, little is known about the receptors. Here, we identified two receptor-like kinase (RLK) genes preferentially expressed in Arabidopsis pollen tubes, Lost In Pollen tube guidance 1 (LIP1) and 2 (LIP2), which are involved in guidance control of pollen tubes. LIP1 and LIP2 were anchored to the membrane in the pollen tube tip region via palmitoylation, which was essential for their guidance control. Simultaneous inactivation of LIP1 and LIP2 led to impaired pollen tube guidance into micropyle and significantly reduced attraction of pollen tubes toward AtLURE1. Our results suggest that LIP1 and LIP2 represent essential components of the pollen tube receptor complex to perceive the female signal AtLURE1 for micropylar pollen tube guidance.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Ovule/growth & development , Pollen Tube/growth & development , Signal Transduction , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Fertilization , Ovule/cytology , Pollen Tube/cytology , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...