Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 351: 119977, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160549

ABSTRACT

Moso bamboo (Phyllostachys edulis) is a valuable nontimber forestry product with a biennial cycle, producing abundant bamboo shoots within one year (on-year) and few shoots within the following year (off-year). Moso bamboo plants undergo clonal reproduction, resulting in similar genetic backgrounds. However, the number of moso bamboo shoots produced each year varies. Despite this variation, the impact of soil nutrients and the root microbiome on the biennial bearing of moso bamboo is poorly understood. We collected 139 soil samples and determined 14 major physicochemical properties of the rhizosphere, rhizoplane, and bulk soil in different seasons (i.e., the growing and deciduous seasons) and different years (i.e., on- and off-years). Based on 16S rRNA and metagenomic sequencing, major variations were found in the rhizospheric microbial composition during different seasons and years in the moso bamboo forest. Environmental driver analysis revealed that essential nutrients (i.e., SOC, TOC, TN, P, and NH4+) were the main drivers of the soil microbial community composition and were correlated with the on- and off-year cycles. Moreover, 19 MAGs were identified as important biomarkers that could distinguish on- and off-years. We found that both season and year influenced both the microbial community structure and functional pathways through the biosynthesis of nutrients that potentially interact with the moso bamboo growth rhythm, especially the on-year root-associated microbiome, which had a greater abundance of specific nutrients such as gibberellins and vitamin B6. This work provides a dynamic perspective of the differential responses of various on- and off-year microbial communities and enhances our understanding of bamboo soil microbiome biodiversity and stability.


Subject(s)
Poaceae , Rhizosphere , RNA, Ribosomal, 16S/genetics , Forests , Soil/chemistry
2.
Gigascience ; 112022 10 30.
Article in English | MEDLINE | ID: mdl-36310246

ABSTRACT

Bamboo, the fast-growing grass plant, and rattan, the spiky climbing palm, are both essential forest resources that have been closely linked with human lives, livelihoods and material culture since ancient times. To promote genetic and genomic research in bamboo and rattan, a comprehensive and coordinated international project, the Genome Atlas of Bamboo and Rattan (GABR), was launched in 2017. GABR achieved great success during Phase I (2017-2022). We will focus on investigating and protecting bamboo and rattan germplasm resources in Phase II ( 2022-2027). Here, we briefly review the achievements of Phase I and introduce the goals of Phase II.


Subject(s)
Forests , Sustainable Development , Humans , Poaceae/genetics
3.
BMC Plant Biol ; 22(1): 411, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002818

ABSTRACT

BACKGROUND: The rattan is a valuable plant resource with multiple applications in tropical forests. Calamus simplicifolius and Daemonorops jenkinsiana are the two most representative rattan species, supplying over 95% of the raw materials for the rattan industry. Hence, the wood properties of both rattans have always attracted researchers' attention. RESULTS: We re-annotated the genomes, obtained 81 RNA-Seq datasets, and developed an improved pipeline to increase the reliability of co-expression networks of both rattans. Based on the data and pipeline, co-expression relationships were detected in 11 NACs, 49 MYBs, and 86 lignin biosynthesis genes in C. simplicifolius and four NACs, 59 MYBs, and 76 lignin biosynthesis genes in D. jenkinsiana, respectively. Among these co-expression pairs, several genes had a close relationship to the development of wood properties. Additionally, we detected the enzyme gene on the lignin biosynthesis pathway was regulated by either NAC or MYB, while LACCASES was regulated by both NAC and MYB. For D. jenkinsiana, the lignin biosynthesis regulatory network was characterized by positive regulation, and MYB possible negatively regulate non-expressed lignin biosynthesis genes in stem tissues. For C. simplicifolius, NAC may positively regulate highly expressed genes and negatively regulate non-expressed lignin biosynthesis genes in stem tissues. Furthermore, we established core regulatory networks of NAC and MYB for both rattans. CONCLUSIONS: This work improved the accuracy of rattan gene annotation by integrating an efficient co-expression network analysis pipeline, enhancing gene coverage and accuracy of the constructed network, and facilitating an understanding of co-expression relationships among NAC, MYB, and lignin biosynthesis genes in rattan and other plants.


Subject(s)
Genes, myb , Lignin , Cell Wall/metabolism , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Reproducibility of Results
4.
BMC Genomics ; 22(1): 638, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34479506

ABSTRACT

BACKGROUND: LncRNAs are extensively involved in plant biological processes. However, the lack of a comprehensive lncRNA landscape in moso bamboo has hindered the molecular study of lncRNAs. Moreover, the role of lncRNAs in secondary cell wall (SCW) biosynthesis of moso bamboo is elusive. RESULTS: For comprehensively identifying lncRNA throughout moso bamboo genome, we collected 231 RNA-Seq datasets, 1 Iso-Seq dataset, and 1 full-length cDNA dataset. We used a machine learning approach to improve the pipeline of lncRNA identification and functional annotation based on previous studies and identified 37,009 lncRNAs in moso bamboo. Then, we established a network of potential lncRNA-coding gene for SCW biosynthesis and identified SCW-related lncRNAs. We also proposed that a mechanism exists in bamboo to direct phenylpropanoid intermediates to lignin or flavonoids biosynthesis through the PAL/4CL/C4H genes. In addition, we identified 4 flavonoids and 1 lignin-preferred genes in the PAL/4CL/C4H gene families, which gained implications in molecular breeding. CONCLUSIONS: We provided a comprehensive landscape of lncRNAs in moso bamboo. Through analyses, we identified SCW-related lncRNAs and improved our understanding of lignin and flavonoids biosynthesis.


Subject(s)
Cell Wall , Gene Regulatory Networks , Poaceae , RNA, Long Noncoding , Cell Wall/genetics , Gene Expression Regulation, Plant , Poaceae/genetics , RNA, Long Noncoding/genetics , RNA, Plant/genetics
5.
Nat Commun ; 12(1): 5466, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526499

ABSTRACT

Moso bamboo (Phyllostachys edulis) is an economically and ecologically important nontimber forestry species. Further development of this species as a sustainable bamboo resource has been hindered by a lack of population genome information. Here, we report a moso bamboo genomic variation atlas of 5.45 million single-nucleotide polymorphisms (SNPs) from whole-genome resequencing of 427 individuals covering 15 representative geographic areas. We uncover low genetic diversity, high genotype heterozygosity, and genes under balancing selection underlying moso bamboo population adaptation. We infer its demographic history with one bottleneck and its recently small population without a rebound. We define five phylogenetic groups and infer that one group probably originated by a single-origin event from East China. Finally, we conduct genome-wide association analysis of nine important property-related traits to identify candidate genes, many of which are involved in cell wall, carbohydrate metabolism, and environmental adaptation. These results provide a foundation and resources for understanding moso bamboo evolution and the genetic mechanisms of agriculturally important traits.


Subject(s)
Genome, Plant/genetics , Genome-Wide Association Study/methods , Poaceae/genetics , Transcriptome , Adaptation, Physiological/genetics , China , Evolution, Molecular , Gene Expression Regulation, Plant , Genetic Variation , Genetics, Population/methods , Genomics/methods , Geography , Phylogeny , Plant Proteins/genetics , Poaceae/classification , Poaceae/metabolism , Polymorphism, Single Nucleotide , Exome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...