Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 18(9): 2011-2018, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36926727

ABSTRACT

The low intrinsic growth capacity of neurons and an injury-induced inhibitory milieu are major contributors to the failure of sensory and motor functional recovery following spinal cord injury. Heat shock transcription factor 1 (HSF1), a master regulator of the heat shock response, plays neurogenetic and neuroprotective roles in the damaged or diseased central nervous system. However, the underlying mechanism has not been fully elucidated. In the present study, we used a gecko model of spontaneous nerve regeneration to investigate the potential roles of gecko HSF1 (gHSF1) in the regulation of neurite outgrowth and inflammatory inhibition of macrophages following spinal cord injury. gHSF1 expression in neurons and microglia at the lesion site increased dramatically immediately after tail amputation. gHSF1 overexpression in gecko primary neurons significantly promoted axonal growth by suppressing the expression of suppressor of cytokine signaling-3, and facilitated neuronal survival via activation of the mitogen-activated extracellular signal-regulated kinase/extracellular regulated protein kinases and phosphatidylinositol 3-kinase/protein kinase B pathways. Furthermore, gHSF1 efficiently inhibited the macrophage-mediated inflammatory response by inactivating IkappaB-alpha/NF-kappaB signaling. Our findings show that HSF1 plays dual roles in promoting axonal regrowth and inhibiting leukocyte inflammation, and provide new avenues of investigation for promoting spinal cord injury repair in mammals.

2.
J Phys Chem Lett ; 13(38): 8858-8863, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36123602

ABSTRACT

Metal halide perovskites quantum dots (MHPQDs) have aroused enormous interest in the photovoltaic and photoelectric disciplines because of their marvelous properties and size characteristics. However, one of the key problems of how to systematically analyze charge carriers trapped by defects is still a challenging task. Here, we study multiphonon processes of the charge carrier trapping by various defects in MHPQDs based on the well-known Huang-Rhys model, in which a method of a full-configuration defect, including different defect species with variable depth and lattice relaxation strength, is developed by introducing a localization parameter in the quantum defect model. With the help of this method, these fast trapping channels for charge carriers transferring from the quantum dot ground state to different defects are found. Furthermore, the dependence of the trapping time on the radius of quantum dot, the defect depth, and temperature is given. These results not only enrich the knowledge of charge carrier trapping processes by defects, but also bring light to the designs of MHPQDs-based photovoltaic and photoelectric devices.

3.
Virol Sin ; 25(1): 36-44, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20960282

ABSTRACT

A group of SARS-like coronaviruses (SL-CoV) have been identified in horseshoe bats. Despite SL-CoVs and SARS-CoV share identical genome structure and high-level sequence similarity, SL-CoV does not bind to the same cellular receptor as for SARS-CoV and the N-terminus of the S proteins only share 64% amino acid identity, suggesting there are fundamental differences between these two groups of coronaviruses. To gain insight into the basis of this difference, we established a recombinant adenovirus system expressing the S protein from SL-CoV (rAd-Rp3-S) to investigate its immune characterization. Our results showed that immunized mice generated strong humoral immune responses against the SL-CoV S protein. Moreover, a strong cellular immune response demonstrated by elevated IFN-γ and IL-6 levels was also observed in these mice. However, the induced antibody from these mice had weaker cross-reaction with the SARS-CoV S protein, and did not neutralize HIV pseudotyped with SARS-CoV S protein. These results demonstrated that the immunogenicity of the SL-CoV S protein is distinct from that of SARS-CoV, which may cause the immunological differences between human SARS-CoV and bat SL-CoV. Furthermore, the recombinant virus could serve as a potential vaccine candidate against bat SL-CoV infection.


Subject(s)
Chiroptera/virology , Membrane Glycoproteins/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Viral Envelope Proteins/immunology , Adenoviridae/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral/blood , Cross Reactions , Female , Gene Expression , Genetic Vectors , HIV/genetics , Humans , Interferon-gamma/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/immunology , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , Neutralization Tests , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...