Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammation ; 45(4): 1568-1584, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35175495

ABSTRACT

Intermedin (IMD), a paracrine/autocrine peptide, protects against cardiac fibrosis. However, the underlying mechanism remains poorly understood. Previous study reports that activation of nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cardiac fibrosis. In this study, we aimed to investigate whether IMD mitigated cardiac fibrosis by inhibiting NLRP3. Cardiac fibrosis was induced by angiotensin II (Ang II) infusion for 2 weeks in rats. Western blot, real-time PCR, histological staining, immunofluorescence assay, RNA sequencing, echocardiography, and hemodynamics were used to detect the role and the mechanism of IMD in cardiac fibrosis. Ang II infusion resulted in rat cardiac fibrosis, shown as over-deposition of myocardial interstitial collagen and cardiac dysfunction. Importantly, NLRP3 activation and endoplasmic reticulum stress (ERS) were found in Ang II-treated rat myocardium. Ang II infusion decreased the expression of IMD and increased the expression of the receptor system of IMD in the fibrotic rat myocardium. IMD treatment attenuated the cardiac fibrosis and improved cardiac function. In addition, IMD inhibited the upregulation of NLRP3 markers and ERS markers induced by Ang II. In vitro, IMD knockdown by small interfering RNA significantly promoted the Ang II-induced cardiac fibroblast and NLRP3 activation. Moreover, silencing of inositol requiring enzyme 1 α (IRE1α) blocked the effects of IMD inhibiting fibroblast and NLRP3 activation. Pre-incubation with PKA pathway inhibitor H89 blocked the effects of IMD on the anti-ERS, anti-NLRP3, and anti-fibrotic response. In conclusion, IMD alleviated cardiac fibrosis by inhibiting NLRP3 inflammasome activation through suppressing IRE1α via the cAMP/PKA pathway.


Subject(s)
Adrenomedullin , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neuropeptides , Adrenomedullin/genetics , Adrenomedullin/metabolism , Angiotensin II/pharmacology , Animals , Cells, Cultured , Endoribonucleases , Fibrosis , Inflammasomes/metabolism , Multienzyme Complexes , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Protein Serine-Threonine Kinases , Rats
2.
Thorac Cancer ; 11(5): 1354-1360, 2020 05.
Article in English | MEDLINE | ID: mdl-32180358

ABSTRACT

BACKGROUND: We investigated the clinical value of accurate sublobectomy of pulmonary nodules using video-assisted thoracoscopy (VATS). In June 2017 to June 2019, single lung nodule patients who accepted thoracoscopic resection were included. Palpation and intraoperative ultrasound (IU) were used to localize lung nodules, and the success rate, location time and safety compared. Performance of lung nodule ultrasound was assessed. The success rate of IU localization of pulmonary nodules with different properties was studied. RESULTS: A total of 33 cases with single pulmonary nodules were included in the study, and 32 cases (97%) were successfully located by IU as opposed to 16 cases (48.5%) located by palpation (P < 0.05). Clear hypoechoic ultrasound images of nodules were obtained in all 32 cases, and the diameter of pulmonary nodules on ultrasound and CT were found to have a significant correlation (R = 0.860, P = 0.000). The average positioning time of IU was lower than that of the palpation group (P < 0.05). No complications occurred during ultrasound examination. The success rate of intraoperative ultrasonic localization between the pure ground-glass opacity (p-GGO) group and the mixed-ground-glass opacity (m-GGO) group was 90%, 100% (P = 0.526). CONCLUSIONS: In thoracoscopic surgery, IU can locate pulmonary nodules accurately, efficiently and safely, and also has a high degree of accuracy in locating different types of pulmonary nodules.


Subject(s)
Lung Neoplasms/surgery , Multiple Pulmonary Nodules/surgery , Pneumonectomy/methods , Solitary Pulmonary Nodule/surgery , Thoracic Surgery, Video-Assisted/methods , Ultrasonography/methods , Adult , Aged , Female , Follow-Up Studies , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Middle Aged , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Prognosis , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology
3.
J Cardiovasc Pharmacol Ther ; 25(3): 251-264, 2020 05.
Article in English | MEDLINE | ID: mdl-31698947

ABSTRACT

AIM: Vascular calcification (VC) is thought to be an independent predictor of cardiovascular morbidity and mortality. Intermedin1-53 (IMD) is a cardiovascular protective peptide and can inhibit vascular medial calcification in rats. In this study, we investigated the effect of IMD on atherosclerotic calcification induced by a high-fat diet plus homocysteine (Hcy) and the potential mechanisms. METHODS: ApoE-/- mice were fed a high-fat diet with Hcy in drinking water to induce atherosclerotic calcification. RESULTS: As compared to the high-fat diet alone, Hcy treatment significantly increased atherosclerotic lesion areas and the number of calcified nodules in aortic roots and was reduced by IMD infusion or 4-phenylbutyric acid (PBA) treatment. In vitro, as compared to calcifying medium alone, Hcy treatment further increased alkaline phosphatase activity, calcium content, and calcium nodule number in human aorta vascular smooth muscle cells (HA-VSMCs), all blocked by IMD or PBA pretreatment. Mechanistically, IMD or PBA significantly alleviated endoplasmic reticulum stress (ERS) activation compared with Hcy treatment. In parallel, IMD or PBA attenuated the messenger RNA levels of osteogenic markers and inflammatory cytokines in aortas and their protein levels in lesions of aortic roots. In vitro, Hcy treatment significantly increased the protein levels of osteoblast-like cell markers in primary rat VSMCs and inflammation markers in mouse peritoneal macrophages, all decreased with IMD or PBA pretreatment. Intermedin1-53 pretreatment also markedly reduced the protein levels of ERS markers in rat VSMCs and mouse peritoneal macrophages. CONCLUSIONS: Intermedin1-53 protects against Hcy-promoted atherosclerotic calcification in ApoE-/- mice by inhibiting ERS.


Subject(s)
Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Endoplasmic Reticulum Stress/drug effects , Homocysteine , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Peptide Hormones/pharmacology , Vascular Calcification/prevention & control , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aortic Diseases/chemically induced , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/chemically induced , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/pathology , Rats, Sprague-Dawley , Vascular Calcification/chemically induced , Vascular Calcification/metabolism , Vascular Calcification/pathology
4.
Chin Med J (Engl) ; 131(5): 532-538, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29483386

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is closely related to the cardiovascular events in vascular calcification (VC). However, little has known about the characteristics of kidney injury caused by VC. Fibroblast growth factor 21 (FGF21) is an endocrine factor, which takes part in various metabolic actions with the potential to alleviate metabolic disorder diseases. Even FGF21 has been regarded as a biomarker in CKD, the role of FGF21 in CKD remains unclear. Therefore, in this study, we evaluate the FGF21 on the kidney injury in VC rats. METHODS: The male Sprague-Dawley rats were divided into three groups: (1) control group, (2) Vitamin D3 plus nicotine (VDN)-induced VC group, (3) FGF21-treated VDN group. After 4 weeks, the rats were killed and the blood was collected for serum creatinine, urea nitrogen, calcium, and phosphate measurement. Moreover, the renal tissues were homogenized for alkaline phosphatases (ALPs) activity and calcium content. The levels of FGF21 protein were measured by radioimmunoassay. The levels of ß-Klotho and FGF receptor 1 (FGFR1) protein were measured by enzyme-linked immunosorbent assay (ELISA). The structural damage and calcifications in aortas were stained by Alizarin-red S. Moreover, the structure of kidney was observed by hematoxylin and eosin staining. RESULTS: The renal function impairment caused by VDN modeling was ameliorated by FGF21 treatment, inhibited the elevated serum creatinine and urea level by 20.5% (34.750 ± 4.334 µmol/L vs. 27.630 ± 2.387 µmol/L) and 4.0% (7.038 ± 0.590 mmol/L vs. 6.763 ± 0.374 mmol/L; P < 0.01), respectively, together with the structural damages of glomerular atrophy and renal interstitial fibrosis. FGF21 treatment downregulated the ALP activity, calcium content in the kidney of VC rats by 42.1% (P < 0.01) and 11.7% (P < 0.05) as well as ameliorated the aortic injury and calcification as compared with VDN treatment alone group, indicating an ameliorative effect on VC. ELISA assays showed that the expression of ß-Klotho, a component of FGF21 receptor system, was increased in VDN-treated VC rats by 37.4% (6.588 ± 0.957 pg/mg vs. 9.054 ± 0.963 pg/mg; P < 0.01), indicating an FGF21-resistant state. Moreover, FGF21 treatment downregulated the level of ß-Klotho in renal tissue by 16.7% (9.054 ± 0.963 pg/mg vs. 7.544 ± 1.362 pg/mg; P < 0.05). However, the level of FGFR1, the receptor of FGF21, kept unchanged under VDN and VDN plus FGF21 administration (0.191 ± 0.0376 ng/mg vs. 0.189 ± 0.032 ng/mg vs. 0.181 ± 0.034 ng/mg; P > 0.05). CONCLUSIONS: In the present study, FGF21 was observed to ameliorate the kidney injury in VDN-induced VC rats. FGF21 might be a potential therapeutic factor in CKD by cutting off the vicious circle between VC and kidney injury.


Subject(s)
Fibroblast Growth Factors/therapeutic use , Kidney Diseases/drug therapy , Renal Insufficiency/drug therapy , Vascular Calcification/drug therapy , Animals , Calcium/metabolism , Fibroblast Growth Factors/pharmacology , Male , Membrane Proteins/metabolism , Phosphodiesterase I/metabolism , Rats , Rats, Sprague-Dawley
5.
Arterioscler Thromb Vasc Biol ; 36(11): 2176-2190, 2016 11.
Article in English | MEDLINE | ID: mdl-27634835

ABSTRACT

OBJECTIVE: Oxidative stress plays a critical role in the development of abdominal aortic aneurysm (AAA). Intermedin (IMD) is a regulator of oxidative stress. Here, we investigated whether IMD reduces AAA by inhibiting oxidative stress. APPROACH AND RESULTS: In angiotensin II-induced ApoE-/- mouse and CaCl2-induced C57BL/6J mouse model of AAA, IMD1-53 significantly reduced the incidence of AAA and maximal aortic diameter. Ultrasonography, hematoxylin, and eosin staining and Verhoeff-van Gieson staining showed that IMD1-53 significantly decreased the enlarged aortas and elastic lamina degradation induced by angiotensin II or CaCl2. Mechanistically, IMD1-53 attenuated oxidative stress, inflammation, vascular smooth muscle cell apoptosis, and matrix metalloproteinase activation. IMD1-53 inhibited the activation of redox-sensitive signaling pathways, decreased the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase subunits, and reduced the activity of nicotinamide adenine dinucleotide phosphate oxidase in AAA mice. Expression of Nox4 was upregulated in human AAA segments and in angiotensin II-treated mouse aortas and was markedly decreased by IMD1-53. In vitro, vascular smooth muscle cells with small-interfering RNA knockdown of IMD showed significantly increased angiotensin II-induced reactive oxygen species, and small-interfering RNA knockdown of Nox4 markedly inhibited the reactive oxygen species. IMD knockdown further increased the apoptosis of vascular smooth muscle cells and inflammation, which was reversed by Nox4 knockdown. Preincubation with IMD17-47 and protein kinase A inhibitor H89 inhibited the effect of IMD1-53, reducing Nox4 protein levels. CONCLUSIONS: IMD1-53 could have a protective effect on AAA by inhibiting oxidative stress.


Subject(s)
Antioxidants/pharmacology , Aorta, Abdominal/drug effects , Aortic Aneurysm, Abdominal/prevention & control , Oxidative Stress/drug effects , Peptide Hormones/pharmacology , Adrenomedullin/metabolism , Angiotensin II , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apoptosis/drug effects , Calcium Chloride , Cells, Cultured , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dilatation, Pathologic , Disease Models, Animal , Genotype , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , NADPH Oxidases/metabolism , Neuropeptides/metabolism , Peptide Hormones/metabolism , Phenotype , RNA Interference , Rats, Sprague-Dawley , Signal Transduction/drug effects , Time Factors , Transfection
6.
J Atheroscler Thromb ; 23(11): 1294-1306, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27052784

ABSTRACT

AIM: Endoplasmic reticulum stress (ERS) and inflammation participate in cardiac fibrosis. Importantly, a novel paracrine/autocrine peptide intermedin1-53 (IMD1-53) in the heart inhibits myocardial fibrosis in rats. However, the mechanisms are yet to be fully elucidated. METHODS: Myocardial fibrosis in apolipoprotein E-deficient (ApoE -/-) mice and neonatal rat cardiac fibroblasts (CFs) were induced using homocysteine (Hcy). RESULTS: IMD1-53 inhibited myocardial fibrosis in vivo and in vitro. Picrosirius red staining showed that IMD1-53 reduced myocardial interstitial collagen deposition in ApoE-/- mice treated with Hcy and decreased the expression of myocardial collagen I and III, which was further verified in rat CFs. IMD1-53 attenuated myocardial hypertrophy, as shown by cardiomyocyte cross-sectional area, ratio of heart weight to body weight, and mRNA levels of atrial natriuretic peptide and brain natriuretic peptide. IMD1-53 inhibited the upregulation of ERS hallmarkers such as glucose-regulated protein 78 (GRP78), GRP94, activating transcription factor 6 (ATF6), ATF4, inositol-requiring enzyme 1α, spliced-X-box-binding protein-1, protein kinase receptor-like ER kinase, and eukaryotic translation initiation factor 2α in mouse myocardium and rat CFs treated with Hcy. In addition, IMD1-53 decreased the production of inflammatory factors such as tumor necrosis factor-α, monocyte chemotactic protein-1, interleukin-6 (IL-6), and IL-1ß in the mouse myocardium and rat CFs treated with Hcy. Concurrently, IMD1-53 ameliorated the expression of nuclear factor-κB, transforming growth factor-ß1, and c-Jun N-terminal kinase in the mouse myocardium and rat CFs treated with Hcy. CONCLUSIONS: IMD potentially protects against myocardial fibrosis induced by Hcy in ApoE-/- mice, possibly via attenuating myocardial ERS and inflammation.


Subject(s)
Apolipoproteins E/deficiency , Endomyocardial Fibrosis/prevention & control , Endoplasmic Reticulum Stress/drug effects , Homocysteine/adverse effects , Inflammation/prevention & control , Lipid Metabolism, Inborn Errors/metabolism , Neuropeptides/physiology , Animals , Animals, Newborn , Apolipoproteins E/metabolism , Blotting, Western , Cells, Cultured , Endomyocardial Fibrosis/metabolism , Endomyocardial Fibrosis/pathology , Endoplasmic Reticulum Chaperone BiP , Fluorescent Antibody Technique , Inflammation/metabolism , Male , Mice , Mice, Knockout , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
7.
Kidney Int ; 89(3): 586-600, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26880455

ABSTRACT

Deficiency in α-Klotho is involved in the pathogenesis of vascular calcification. Since intermedin (IMD)1-53 (a calcitonin/calcitonin gene-related peptide) protects against vascular calcification, we studied whether IMD1-53 inhibits vascular calcification by upregulating α-Klotho. A rat model of chronic kidney disease (CKD) with vascular calcification induced by the 5/6 nephrectomy plus vitamin D3 was used for study. The aortas of rats with CKD showed reduced IMD content but an increase of its receptor, calcitonin receptor-like receptor, and its receptor modifier, receptor activity-modifying protein 3. IMD1-53 treatment reduced vascular calcification. The expression of α-Klotho was greatly decreased in the aortas of rats with CKD but increased in the aortas of IMD1-53-treated rats with CKD. In vitro, IMD1-53 increased α-Klotho protein level in calcified vascular smooth muscle cells. α-Klotho knockdown blocked the inhibitory effect of IMD1-53 on vascular smooth muscle cell calcification and their transformation into osteoblast-like cells. The effect of IMD1-53 to upregulate α-Klotho and inhibit vascular smooth muscle cell calcification was abolished by knockdown of its receptor or its modifier protein, or treatment with the protein kinase A inhibitor H89. Thus, IMD1-53 may attenuate vascular calcification by upregulating α-Klotho via the calcitonin receptor/modifying protein complex and protein kinase A signaling.


Subject(s)
Cell Transdifferentiation/drug effects , Glucuronidase/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Osteoblasts/drug effects , Peptide Hormones/pharmacology , Renal Insufficiency, Chronic/drug therapy , Vascular Calcification/prevention & control , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Cells, Cultured , Cholecalciferol , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Glucuronidase/genetics , Humans , Klotho Proteins , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nephrectomy , Osteoblasts/metabolism , Osteoblasts/pathology , Phenotype , RNA Interference , Rats, Sprague-Dawley , Receptor Activity-Modifying Protein 3/metabolism , Receptors, Calcitonin/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects , Transfection , Up-Regulation , Vascular Calcification/genetics , Vascular Calcification/metabolism , Vascular Calcification/pathology
8.
Molecules ; 21(1): 57, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26742025

ABSTRACT

Nano-TiO2 is widely applied in the automobile exhaust hose reels as a catalyst to reduce oxynitride emissions, including nitric oxide (NO). In the biomedicine field, NO plays an important role in vasodilation and edema formation in human bodies. However, the deswelling activity of nano-TiO2 has not been reported. Here, we demonstrated that nano-TiO2 can significantly degrade the production of NO in LPS-induced RAW264.7 mouse macrophages. Further study indicated that nano-TiO2 exhibited an effect on vascular permeability inhibition, and prevented carrageenan-induced footpad edema. Therefore, we prepared a nano-TiO2 ointment and observed similar deswelling effects. In conclusion, nano-TiO2 might act as a novel deswelling agent related with its degradation of NO, which will aid in our ability to design effective interventions for edema involved diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Edema/drug therapy , Macrophages/drug effects , Nanostructures/therapeutic use , Titanium/pharmacology , Animals , Capillary Permeability/drug effects , Carrageenan , Catalysis , Cell Line , Edema/chemically induced , Edema/metabolism , Edema/pathology , Female , Hindlimb , Macrophages/cytology , Macrophages/metabolism , Mice , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Rats , Rats, Sprague-Dawley
9.
J Hypertens ; 33(8): 1676-87, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26136070

ABSTRACT

OBJECTIVE: Intermedin (IMD), a novel member of the calcitonin/calcitonin gene-related peptide family, is involved in maintaining circulatory homeostasis and is a protective factor of heart and vessel. Here, we investigated the effects of IMD on cardiac hypertrophy in vivo and in vitro and explored the mechanisms involved. METHODS AND RESULTS: IMD1-53 (100 ng/kg/h) was systemically administered to rats with cardiac hypertrophy induced by abdominal aortic constriction (AAC) by a mini-osmotic pump the next day after surgery continuously for 4 weeks. The AAC-treated rats before IMD infusion showed increased IMD content and expression of its receptors in the hearts. In-vivo administration of IMD1-53 greatly attenuated the cardiac hypertrophy as shown by heart weight to body weight ratio (HW/BW), haemodynamics, echocardiography, histological analyses and expression of hypertrophic markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) induced by AAC. IMD1-53 treatment significantly reduced the myocardial protein expression of endoplasmic reticulum stress (ERS) markers such as glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP) and caspase-12, whereas the protein level of phosphorylated AMP-activated protein kinase (p-AMPK) was upregulated with IMD1-53 treatment, which was further confirmed in cultured cardiomyocytes. Concurrently, cardiomyocyte apoptosis in vivo and in vitro was ameliorated by IMD1-53 treatment. The inhibitory effects of IMD1-53 on ERS and apoptosis were eliminated on pretreatment with compound C, an AMPK inhibitor. CONCLUSION: IMD1-53 could exert its cardioprotective effect on cardiac hypertrophy by inhibiting myocardial ERS and apoptosis, possibly via activation of AMPK signalling.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adrenomedullin/pharmacology , Cardiomegaly/drug therapy , Endoplasmic Reticulum Stress/drug effects , Myocardium/pathology , Neuropeptides/pharmacology , Adrenomedullin/metabolism , Animals , Apoptosis/drug effects , Atrial Natriuretic Factor/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cardiomegaly/diagnostic imaging , Cardiomegaly/pathology , Caspase 12/metabolism , Cells, Cultured , Echocardiography , Endoplasmic Reticulum/metabolism , Heat-Shock Proteins/metabolism , Male , Myocytes, Cardiac/drug effects , Natriuretic Peptide, Brain/metabolism , Neuropeptides/metabolism , Organ Size/drug effects , Phosphorylation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...