Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zookeys ; 1180: 333-354, 2023.
Article in English | MEDLINE | ID: mdl-38312323

ABSTRACT

Soft scale insects (Hemiptera, Coccidae) are important pests of various agricultural and horticultural crops and ornamental plants. They have negative impacts on agriculture and forestry. The tribe Coccini represents one of the most ancient evolutionary lineages of soft scale insects. However, no complete Coccini mitochondrial genome (mitogenome) is available in public databases. Here, we described the complete mitogenome of Coccushesperidum L., 1758. The 15,566 bp mitogenome of C.hesperidum had a high A+T content (83.4%) and contained a typical set of 37 genes, with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and two ribosomal RNA genes (rRNAs). Only seven tRNAs had the typical clover-leaf secondary structure and the remaining tRNAs lacked the DHU arm, TψC arm or both. Moreover, a comparative analysis of all reported scale insect mitogenomes from GenBank database was performed. The mitogenomes of scale insects showed high similarities in base composition and A+T content. Additionally, our phylogenetic analysis confirmed the monophyly of Coccomorpha and revealed that the archaeococcoids were the most basal lineage within Coccomorpha, while Ericeruspela and Didesmococcuskoreanus, belonging to Coccidae, were often mixed with Aclerdidae, making Coccidae a paraphyletic group. These findings expand the mitogenome database of scale insects and provide new insights on mitogenome evolution for future studies across different insect groups.

2.
JCI Insight ; 7(14)2022 06 16.
Article in English | MEDLINE | ID: mdl-35708906

ABSTRACT

Although macrophages are undoubtedly attractive therapeutic targets for acute kidney injury (AKI) because of their critical roles in renal inflammation and repair, the underlying mechanisms of macrophage phenotype switching and efferocytosis in the regulation of inflammatory responses during AKI are still largely unclear. The present study elucidated the role of junctional adhesion molecule-like protein (JAML) in the pathogenesis of AKI. We found that JAML was significantly upregulated in kidneys from 2 different murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI. By generation of bone marrow chimeric mice, macrophage-specific and tubular cell-specific Jaml conditional knockout mice, we demonstrated JAML promoted AKI mainly via a macrophage-dependent mechanism and found that JAML-mediated macrophage phenotype polarization and efferocytosis is one of the critical signal transduction pathways linking inflammatory responses to AKI. Mechanistically, the effects of JAML on the regulation of macrophages were, at least in part, associated with a macrophage-inducible C-type lectin-dependent mechanism. Collectively, our studies explore for the first time to our knowledge new biological functions of JAML in macrophages and conclude that JAML is an important mediator and biomarker of AKI. Pharmacological targeting of JAML-mediated signaling pathways at multiple levels may provide a novel therapeutic strategy for patients with AKI.


Subject(s)
Acute Kidney Injury , Acute Kidney Injury/pathology , Animals , Cell Adhesion Molecules , Junctional Adhesion Molecules/metabolism , Kidney/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...