Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 927: 172338, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608897

ABSTRACT

Algal blooms in lakes have been a challenging environmental issue globally under the dual influence of human activity and climate change. Considerable progress has been made in the study of phytoplankton dynamics in lakes; The long-term in situ evolution of dominant bloom-forming cyanobacteria in meso-eutrophic plateau lakes, however, lacks systematic research. Here, the monthly parameters from 12 sampling sites during the period of 1997-2022 were utilized to investigate the underlying mechanisms driving the superiority of bloom-forming cyanobacteria in Erhai, a representative meso-eutrophic plateau lake. The findings indicate that global warming will intensify the risk of cynaobacteria blooms, prolong Microcystis blooms in autumn to winter or even into the following year, and increase the superiority of filamentous Planktothrix and Cylindrospermum in summer and autumn. High RUETN (1.52 Biomass/TN, 0.95-3.04 times higher than other species) under N limitation (TN < 0.5 mg/L, TN/TP < 22.6) in the meso-eutrophic Lake Erhai facilitates the superiority of Dolichospermum. High RUETP (43.8 Biomass/TP, 2.1-10.2 times higher than others) in TP of 0.03-0.05 mg/L promotes the superiority of Planktothrix and Cylindrospermum. We provided a novel insight into the formation of Planktothrix and Cylindrospermum superiority in meso-eutrophic plateau lake with low TP (0.005-0.07 mg/L), which is mainly influenced by warming, high RUETP and their vertical migration characteristics. Therefore, we posit that although the obvious improvement of lake water quality is not directly proportional to the control efficacy of cyanobacterial blooms, the evolutionary shift in cyanobacteria population structure from Microcystis, which thrives under high nitrogen and phosphorus conditions, to filamentous cyanobacteria adapted to low nitrogen and phosphorus levels may serve as a significant indicator of water quality amelioration. Therefore, we suggest that the risk of filamentous cyanobacteria blooms in the meso-eutrophic plateau lake should be given attention, particularly in light of improving water quality and global warming, to ensure drinking water safety.


Subject(s)
Cyanobacteria , Eutrophication , Lakes , Temperature , Lakes/microbiology , Lakes/chemistry , China , Environmental Monitoring , Nitrogen/analysis , Phytoplankton , Climate Change , Seasons , Phosphorus/analysis , Nutrients/analysis , Global Warming
2.
J Environ Manage ; 345: 118693, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37598495

ABSTRACT

Effects of climate change and nutrient load caused by human activities on lake phytoplankton blooms have attracted much attention globally. However, their roles and synergistic effects on phytoplankton biomass and community historical succession are not well understood, especially for meso-eutrophic plateau lakes. In this study, a multi-year (1997-2022) monthly dataset including hydro-chemical and meteorological indicators of the meso-eutrophic plateau lake Erhai in China, was used to explore the contributions of climate change and nutrients on phytoplankton biomass variation and community succession. Phytoplankton biomass increased from 1997 to 2006, slowly decreased from 2006 to 2015, then increased again from 2015 to 2022, according to a generalised additive model (GAM). Alongside warming, nitrogen, phosphorus and organic matter are key drivers of long-term interannual variation in phytoplankton biomass and historical succession of the phytoplankton community. The extensive blooms in recent years were strongly associated with both organic matter accumulation and global warming. Phytoplankton biomass in northern and southern districts was greater than in central areas, with Cyanophyta and Pyrrophyta dominating in the north and Chlorophyta prevalent in the south. Since 2015, phytoplankton diversity has increased significantly, and biomass has declined in the southern district but increased markedly in the northern district. Spatial heterogeneity was caused by the spatial distribution of nutrients and the buoyancy regulation capacity of cyanobacteria. The results demonstrate that bloom mitigation responds strongly to nitrogen and phosphorus control in meso-eutrophic lakes, therefore preventing and controlling blooms through nitrogen and phosphorus reduction is still an effective measure. Given the accumulation of organic matter in recent years, synergistic control of organic matter and total nitrogen and phosphorus could effectively reduce the risk of cyanobacterial and dinoflagellate blooms.


Subject(s)
Cyanobacteria , Phytoplankton , Humans , Phytoplankton/physiology , Biomass , Lakes/microbiology , Seasons , Cyanobacteria/physiology , China , Phosphorus/analysis , Nitrogen/analysis , Eutrophication
3.
Huan Jing Ke Xue ; 40(2): 669-676, 2019 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-30628329

ABSTRACT

The effect of ammonia-nitrogen in water on phosphorus removal by magnesium modified biochar (MBC) was developed to increase the utilization of wetland plants. The crystal structures were measured by X-ray powder diffraction (XRD). MBC was prepared using reed as the biomass feedstock, which was modified with magnesium chloride. The raw biochar (BC) was prepared as a control. The removal of phosphate from solution using four different methods, i.e. MBC, BC, BC, and MgCl2 solutions (BC+Mg2+) and MgCl2 solutions (Mg2+), under different nitrogen to phosphorus molar ratios and initial phosphorus concentrations was investigated in batch experiments. The results demonstrated that the phosphorus removal efficiency of the four treatment methods, which followed the order of MBC>>BC+Mg2+≈Mg2+>BC. NH4+ in the solution, promoted phosphorus removal by MBC. In addition, the larger the ratio of nitrogen to phosphorus and the higher the initial phosphorus concentration, the stronger the phosphorus removal capacity of MBC was. In the three treatments with MBC, BC+Mg2+, and Mg2+, the XRD analysis showed that NH4+ reacted with Mg2+ and PO43- in the solution to form MgNH4PO4·6H2O at N:P=5 or 10, promoting the removal of phosphorus. For recycling purposes, waste biomass from constructed wetlands could be used to produce MBC and treat polluted water rich in ammonium and phosphate. Moreover, the ammonium-nitrogen promotes the phosphate removal by MBC. The results from this study provide a new theoretical basis and data support for the treatment of water eutrophication.


Subject(s)
Charcoal/chemistry , Magnesium/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Adsorption , Magnesium Chloride , Water Pollutants, Chemical/chemistry , Water Purification/methods , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...