Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 96: 153847, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34836744

ABSTRACT

BACKGROUND: N-methyl-d-aspartate receptors (NMDARs) have been demonstrated to play central roles in stroke pathology and recovery, including dual roles in promoting either neuronal survival or death with their different subtypes and locations. PURPOSE: We have previously demonstrated that pseudoginsenoside-F11 (PF11) can provide long-term neuroprotective effects on transient and permanent ischemic stroke-induced neuronal damage. However, it is still needed to clarify whether NMDAR-2A (NR2A)-mediated pro-survival signaling pathway is involved in the beneficial effect of PF11 on permanent ischemic stroke. MATERIAL AND METHODS: PF11 was administrated in permanent middle cerebral artery occlusion (pMCAO)-operated rats. The effect of PF11 on oxygen-glucose deprivation (OGD)-exposed primary cultured neurons were further evaluated. The regulatory effect of PF11 on NR2A expression and the activation of its downstream AKT-CREB pathway were detected by Western blotting and immunofluorescence in the presence or absence of a specific NR2A antagonist NVP-AAM077 (NVP) both in vivo and in vitro. RESULTS: PF11 dose- and time-dependently decreased calpain1 (CAPN1) activity and its specific breakdown product α-Fodrin expression, while the expression of Ca2+/calmodulin-dependent protein kinase II alpha (CaMKII-α) was significantly upregulated in the cortex and striatum of rats at 24 h after the onset of pMCAO operation. Moreover, PF11 prevented the downregulation of NR2A, p-AKT/AKT, and p-CREB/CREB in both in vivo and in vitro stroke models. Finally, the results indicated treatment with NVP can abolish the effects of PF11 on alleviating the ischemic injury and activating NR2A-mediated AKT-CREB signaling pathway. CONCLUSIONS: Our results demonstrate that PF11 can exert neuroprotective effects on ischemic stroke by inhibiting the activation of CAPN1 and subsequently enhancing the NR2A-medicated activation of AKT-CREB pathway, which provides a mechanistic link between the neuroprotective effect of PF11 against cerebral ischemia and NR2A-associated pro-survival signaling pathway.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Animals , Brain Ischemia/drug therapy , Calpain , Ginsenosides , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
2.
Neuroscience ; 426: 33-49, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31790669

ABSTRACT

After ischemic stroke, the degenerated myelin caused by ischemic injury cannot be rapidly cleared away by microglia and interferes with the recovery process. Complement receptor 3 (CR3, CD11b/CD18), belonging to ß2 integrin family primarily expressed in phagocytes, is involved in the microglial phagocytosis of myelin debris. We previously found that pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, exerts neuroprotective effects against ischemic stroke and neuroinflammation. In the present study, we investigated the promotion of PF11 on oxygen-glucose deprivation (OGD)-induced microglial phagocytosis of myelin debris, the neuroprotection of PF11 on permanent middle cerebral artery occlusion (pMCAO)-induced ischemic stroke, and the possible role of CR3. The results indicated that PF11 (50 µM) accelerated the OGD-induced promotion of myelin debris phagocytosis by microglia in the early stage of OGD (2 h, 4 h, 8 h), which was significantly inhibited by anti-CD11b mAb or down-regulated by CD11b-specific siRNA. Meanwhile, PF11 strengthened the OGD-activated RhoA/ROCK signaling associated with the internalization during myelin debris phagocytosis through CR3. Consistently, the anti-CD11b mAb could markedly attenuated the nrueoprotective effects of PF11 (12 mg/kg, i.v.) on infarction and brain edema, neurological functions and loss of neurons of pMCAO rats. These findings suggest that PF11 accelerates the phagocytosis of myelin debris by microglia mainly through CR3, which may likely contribute to its neuroprotection against ischemic stroke.


Subject(s)
Ginsenosides/pharmacology , Microglia/drug effects , Myelin Sheath/drug effects , Neuroprotective Agents/pharmacology , Phagocytosis/drug effects , Animals , Brain/drug effects , Brain Edema/pathology , Demyelinating Diseases/drug therapy , Demyelinating Diseases/pathology , Myelin Sheath/pathology , Neurons/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...