Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001044

ABSTRACT

The generation of terahertz radiation via laser-induced plasma from two-color femtosecond pulses in air has been extensively studied due to its broad emission spectrum and significant pulse energy. However, precise control over the temporal properties of these ultra-broadband terahertz pulses, as well as the measurement of their polarization state, remain challenging. In this study, we review our latest findings on these topics and present additional results not previously reported in our earlier works. First, we investigate the impact of chirping on the fundamental wave and the effect of manipulating the phase difference between the fundamental wave and the second-harmonic wave on the properties of generated terahertz pulses. We demonstrate that we can tune the time shape of terahertz pulses, causing them to reverse polarity or become bipolar by carefully selecting the correct combination of chirp and phase. Additionally, we introduce a novel technique for polarization characterization, termed terahertz unipolar polarimetry, which utilizes a weak probe beam and avoids the systematic errors associated with traditional methods. This technique is effective for detecting polarization-structured terahertz beams and the longitudinal component of focused terahertz beams. Our findings contribute to the improved control and characterization of terahertz radiation, enhancing its application in fields such as nonlinear optics, spectroscopy, and microscopy.

2.
J Microsc ; 293(3): 153-159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37843285

ABSTRACT

We investigate the microscopic behaviour of hydrogen-containing species formed on the surface of III-N semiconductor samples by the residual hydrogen in the analysis chamber in laser-assisted atom probe tomography (APT). We analysed AlGaN/GaN heterostructures containing alternate layers with a thickness of about 20 nm. The formation of H-containing species occurs at field strengths between 22 and 26 V/nm and is independent of the analysed samples. The 3D APT reconstruction makes it possible to map the evolution of the surface behaviour of these species issued by chemical reactions. The results highlight the strong dependence of the relative abundances of hydrides on the surface field during evaporation. The relative abundances of the hydrides decrease when the surface field increases due to the evolution of the tip shape or the different evaporation behaviour of the different layers.

3.
Microsc Microanal ; 29(2): 451-458, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37749721

ABSTRACT

By collecting simultaneously optical and chemical/morphological data from nanoscale volumes, the Photonic Atom Probe (PAP) can be applied not only to the study of the relationship between optical and structural properties of quantum emitter but also to evaluate the influence of other factors, such as the presence of point defects, on the photoluminescence. Through the analysis of multiple layers of InGaN/GaN quantum dots (QDs), grown so that the density of structural defects is higher with increasing distance from the substrate, we establish that the light emission is higher in the regions exhibiting a higher presence of structural defects. While the presence of intrinsic point defects with non-radiative recombination properties remains elusive, our result is consistent with the fact that QD layers closer to the substrate behave as traps for non-radiative point defects. This result demonstrates the potential of the PAP as a technique for the study of the optical properties of defects in semiconductors.

4.
Microsc Microanal ; : 1-16, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34538293

ABSTRACT

A position and energy-sensitive detector has been developed for atom probe tomography (APT) instruments in order to deal with some mass peak overlap issues encountered in APT experiments. Through this new type of detector, quantitative and qualitative improvements could be considered for critical materials with mass peak overlaps, such as nitrogen and silicon in TiSiN systems, or titanium and carbon in cemented carbide materials. This new detector is based on a thin carbon foil positioned on the front panel of a conventional MCP-DLD detector. According to several studies, it has been demonstrated that the impact of ions on thin carbon foils has the effect of generating a number of transmitted and reflected secondary electrons. The number generated mainly depends on both the kinetic energy and the mass of incident particles. Despite the fact that this phenomenon is well known and has been widely discussed for decades, no studies have been performed to date for using it as a means to discriminate particles energy. Therefore, this study introduces the first experiments on a potential new generation of APT detectors that would be able to resolve mass peak overlaps through the energy-sensitivity of thin carbon foils.

5.
Microsc Microanal ; 27(2): 365-384, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33750488

ABSTRACT

This article presents a fast and highly efficient algorithm developed to reconstruct a three-dimensional (3D) volume with a high spatial precision from a set of field ion microscopy (FIM) images, and specific tools developed to characterize crystallographic lattice and defects. A set of FIM digital images and image processing algorithms allow the construction of a 3D reconstruction of the sample at the atomic scale. The capability of the 3D FIM to resolve the crystallographic lattice and the finest defects in metals opens a new way to analyze materials. This spatial precision was quantified on tungsten, analyzed at different analyzing conditions. A specific data mining tool, based on Fourier transforms, was also developed to characterize lattice distortions in the reconstructed volumes. This tool has been used in simulated and experimental volumes to successfully locate and characterize defects such as dislocations and grain boundaries.

6.
Sci Adv ; 7(7)2021 Feb.
Article in English | MEDLINE | ID: mdl-33568478

ABSTRACT

Ultrafast control of matter by a strong electromagnetic field on the atomic scale is essential for future investigations and manipulations of ionization dynamics and excitation in solids. Coupling picosecond duration terahertz pulses to metallic nanostructures allows the generation of extremely localized and intense electric fields. Here, using single-cycle terahertz pulses, we demonstrate control over field ion emission from metallic nanotips. The terahertz near field is shown to induce an athermal ultrafast evaporation of surface atoms as ions on the subpicosecond time scale, with the tip acting as a field amplifier. The ultrafast terahertz-ion interaction offers unprecedented control over ultrashort free-ion pulses for imaging, analyzing, and manipulating matter at atomic scales. Here, we demonstrate terahertz atom probe microscopy as a new platform for microscopy with atomic spatial resolution and ultimate chemical resolution.

7.
Nano Lett ; 20(12): 8733-8738, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33236638

ABSTRACT

Atom Probe Tomography (APT) is a microscopy technique allowing for the 3D reconstruction of the chemical composition of a nanoscale needle-shaped sample with a precision close to the atomic scale. The photonic atom probe (PAP) is an evolution of APT featuring in situ and operando detection of the photoluminescence signal. The optical signatures of the light-emitting centers can be correlated with the structural and chemical information obtained by the analysis of the evaporated ions. It becomes thus possible to discriminate and interpret the spectral signatures of different light emitters as close as 20 nm, well beyond the resolution limit set by the exciting laser wavelength. This technique opens up new perspectives for the study of the physics of low dimensional systems, defects and optoelectronic devices.

8.
Microsc Microanal ; 23(6): 1067-1075, 2017 12.
Article in English | MEDLINE | ID: mdl-29122045

ABSTRACT

The composition of GaAs measured by laser-assisted atom probe tomography may be inaccurate depending on the experimental conditions. In this work, we assess the role of the DC field and the impinging laser energy on such compositional bias. The DC field is found to have a major influence, while the laser energy has a weaker one within the range of parameters explored. The atomic fraction of Ga may vary from 0.55 at low-field conditions to 0.35 at high field. These results have been interpreted in terms of preferential evaporation of Ga at high field. The deficit of As is most likely explained by the formation of neutral As complexes either by direct ejection from the tip surface or upon the dissociation of large clusters. The study of multiple detection events supports this interpretation.

9.
Nano Lett ; 17(7): 4261-4269, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28654283

ABSTRACT

The localization of carrier states in GaN/AlN self-assembled quantum dots (QDs) is studied by correlative multimicroscopy relying on microphotoluminescence, electron tomography, and atom probe tomography (APT). Optically active field emission tip specimens were prepared by focused ion beam from an epitaxial film containing a stack of quantum dot layers and analyzed with different techniques applied subsequently on the same tip. The transition energies of single QDs were calculated in the framework of a 6-bands k.p model on the basis of APT and scanning transmission electron microscopy characterization showing that a good agreement between experimental and calculated energies can be obtained, overcoming the limitations of both techniques. The results indicate that holes effectively localize at interface fluctuations at the bottom of the QD, decreasing the extent of the wave function and the band-to-band transition energy. They also represent an important step toward the correlation of the three-dimensional atomic scale structural information with the optical properties of single light emitters based on quantum confinement.

10.
Microsc Microanal ; 23(2): 221-226, 2017 04.
Article in English | MEDLINE | ID: mdl-28173892

ABSTRACT

Atom probe has been developed for investigating materials at the atomic scale and in three dimensions by using either high-voltage (HV) pulses or laser pulses to trigger the field evaporation of surface atoms. In this paper, we propose an atom probe setup with pulsed evaporation achieved by simultaneous application of both methods. This provides a simple way to improve mass resolution without degrading the intrinsic spatial resolution of the instrument. The basic principle of this setup is the combination of both modes, but with a precise control of the delay (at a femtosecond timescale) between voltage and laser pulses. A home-made voltage pulse generator and an air-to-vacuum transmission system are discussed. The shape of the HV pulse presented at the sample apex is experimentally measured. Optimizing the delay between the voltage and the laser pulse improves the mass spectrum quality.

11.
Nano Lett ; 14(1): 107-14, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24397602

ABSTRACT

A single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy (µPL), high-resolution scanning transmission electron microscopy (HR-STEM) and atom probe tomography (APT). The correlated measurements constitute a rich and coherent set of data supporting the interpretation that the observed µPL narrow emission lines, polarized perpendicularly to the crystal c-axis and with energies in the interval 2.9-3.3 eV, are related to exciton states localized in potential minima induced by the irregular 3D In distribution within the quantum well (QW) planes. This novel method opens up interesting perspectives, as it will be possible to apply it on a wide class of quantum confining emitters and nano-objects.


Subject(s)
Gallium/chemistry , Indium/chemistry , Luminescent Measurements/methods , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning Transmission/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Materials Testing/methods , Molecular Conformation , Quantum Theory , Statistics as Topic
12.
Ultramicroscopy ; 132: 75-80, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23489908

ABSTRACT

The development of laser-assisted atom probes makes it possible, in principle, to exploit the femtosecond laser pulse not only for triggering ion evaporation from a nanometric field emission tip, but also for generating photons via the radiative recombination of electron-hole pairs in tips made of dielectric materials. In this article we demonstrate a first step towards a correlation of micro-photoluminescence (µ-PL) and laser-assisted tomographic atom probe (LA-TAP) analysis applied separately on the same objects, namely on ZnO microwires. In particular, we assess that the use of the focused ion beam (FIB) tip preparation method significantly degrades the radiative recombination yield of the analyzed microwires. We discuss the strategies to avoid the FIB-induced damage on the optical properties of the sample and how to get beyond the correlated µ-PL and LA-TAP analysis with a coupled approach allowing to perform the two analyses within the same instrument.

SELECTION OF CITATIONS
SEARCH DETAIL
...