Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 30(4): 110, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517547

ABSTRACT

CONTEXT AND RESULTS: The study examines the physical characteristics of Co2ZrZ compounds using the Wien2k code and the Anisimov and Gunnarsson approach. Results show metallic attributes in Co2ZrBi and Co2ZrAs, while Co2ZrPb exhibits semi-metallic tendencies. Energy gap evaluations reveal significant infrared transitions, indicating altered electron mobility compensated by increased ultraviolet absorption. These compounds have potential in space solar energy applications due to UV light absorption capabilities, especially in Co2ZrPb. The study also identifies optical phenomena like "super-luminescence" and plasmatic oscillations. COMPUTATIONAL AND THEORETICAL TECHNIQUES: The study uses computational techniques like Wien2k calculation code and Hubbard parameter calculations to investigate Co2ZrPb, a compound with potential for space energy applications. Energy gap assessments are conducted using GGA and mBJ-GGA methods. The study also analyzes the optical behavior of the compounds, including infrared and ultraviolet absorption. The BoltzTraP code is used for thermoelectric investigations, revealing a P-type charge carrier predominance in Co2ZrPb. This comprehensive approach provides valuable insights into electrical conductivity and thermoelectric properties.

2.
J Mol Model ; 29(5): 164, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37118316

ABSTRACT

CONTEXT AND RESULTS: As an inorganic halide perovskite material, AgCaCl3, characterized by its high stability and environmental friendliness, is considered a potential candidate for major applications in optoelectronics and lens manufacturing. This work aimed to determine the electronic properties such as density of state (DOS) and band structure (BS) of AgCaCl3. The results showed that the material has an indirect band gap almost invariably at 1.5 eV in the pressure range studied. The dielectric function [Formula: see text], absorption coefficient [Formula: see text], optical conductivity [Formula: see text], reflectivity [Formula: see text], and the refractive index [Formula: see text] showed clearly that the perovskite AgCaCl3 preserved its optical characteristics within the chosen pressure range investigated. The calculated elastic constants C11, C12, and C14 as dynamic stability criteria for the elastic moduli such as bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio ([Formula: see text]), and anisotropy factor (A) showed that the material is a ductile plastic. Debye temperature ([Formula: see text]), isobaric and isochoric heat capacities (CP, CV), coefficient of the thermal expansion (α), Gibbs free energy (G), and entropy (S) were also studied. The results obtained provide a theoretical basis for experimental work and offer the possibility of future industrial applications of AgCaCl3. COMPUTATIONAL AND THEORETICAL TECHNIQUES: Density functional theory (DFT) calculations as implemented in the Wien2K code were used to study the mechanical and thermal properties of AgCaCl3 perovskite over a pressure range. Lattice parameters, electronic, and optical properties are optimized with the approximation of the generalized gradient of the Perdew-Burke-Ernzerhof function (PBE-GGA) function. The mechanical and thermodynamic properties were calculated using ElaStic and Gibbs2 codes, and the properties of AgCaCl3 over the pressure range investigated were predicted.

SELECTION OF CITATIONS
SEARCH DETAIL
...