Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4885, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849353

ABSTRACT

Inherited cardiomyopathies are common cardiac diseases worldwide, leading in the late stage to heart failure and death. The most promising treatments against these diseases are small molecules directly modulating the force produced by ß-cardiac myosin, the molecular motor driving heart contraction. Omecamtiv mecarbil and Mavacamten are two such molecules that completed phase 3 clinical trials, and the inhibitor Mavacamten is now approved by the FDA. In contrast to Mavacamten, Omecamtiv mecarbil acts as an activator of cardiac contractility. Here, we reveal by X-ray crystallography that both drugs target the same pocket and stabilize a pre-stroke structural state, with only few local differences. All-atom molecular dynamics simulations reveal how these molecules produce distinct effects in motor allostery thus impacting force production in opposite way. Altogether, our results provide the framework for rational drug development for the purpose of personalized medicine.


Subject(s)
Molecular Dynamics Simulation , Myocardial Contraction , Urea , Myocardial Contraction/drug effects , Crystallography, X-Ray , Humans , Urea/analogs & derivatives , Urea/pharmacology , Urea/chemistry , Cardiac Myosins/metabolism , Cardiac Myosins/chemistry , Cardiac Myosins/genetics , Ventricular Myosins/metabolism , Ventricular Myosins/chemistry , Ventricular Myosins/genetics , Animals , Benzylamines , Uracil/analogs & derivatives
2.
PLoS Comput Biol ; 20(4): e1012005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662764

ABSTRACT

Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.


Subject(s)
Adenosine Triphosphate , Myosin Heavy Chains , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/chemistry , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Thermodynamics , Molecular Dynamics Simulation , Computational Biology/methods , Hydrolysis , Binding Sites , Models, Molecular , Protein Conformation
3.
Cell Mol Gastroenterol Hepatol ; 17(6): 983-1005, 2024.
Article in English | MEDLINE | ID: mdl-38307491

ABSTRACT

Microvillus inclusion disease (MVID) is a rare condition that is present from birth and affects the digestive system. People with MVID experience severe diarrhea that is difficult to control, cannot absorb dietary nutrients, and struggle to grow and thrive. In addition, diverse clinical manifestations, some of which are life-threatening, have been reported in cases of MVID. MVID can be caused by variants in the MYO5B, STX3, STXBP2, or UNC45A gene. These genes produce proteins that have been functionally linked to each other in intestinal epithelial cells. MVID associated with STXBP2 variants presents in a subset of patients diagnosed with familial hemophagocytic lymphohistiocytosis type 5. MVID associated with UNC45A variants presents in most patients diagnosed with osteo-oto-hepato-enteric syndrome. Furthermore, variants in MYO5B or STX3 can also cause other diseases that are characterized by phenotypes that can co-occur in subsets of patients diagnosed with MVID. Recent studies involving clinical data and experiments with cells and animals revealed connections between specific phenotypes occurring outside of the digestive system and the type of gene variants that cause MVID. Here, we have reviewed these patterns and correlations, which are expected to be valuable for healthcare professionals in managing the disease and providing personalized care for patients and their families.


Subject(s)
Malabsorption Syndromes , Microvilli , Mucolipidoses , Phenotype , Humans , Mucolipidoses/genetics , Mucolipidoses/pathology , Microvilli/pathology , Microvilli/genetics , Malabsorption Syndromes/genetics , Malabsorption Syndromes/pathology , Animals , Myosin Type V/genetics , Myosin Type V/metabolism , Mutation , Genetic Predisposition to Disease
4.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014327

ABSTRACT

Inherited cardiomyopathies are amongst the most common cardiac diseases worldwide, leading in the late-stage to heart failure and death. The most promising treatments against these diseases are small-molecules directly modulating the force produced by ß-cardiac myosin, the molecular motor driving heart contraction. Two of these molecules that produce antagonistic effects on cardiac contractility have completed clinical phase 3 trials: the activator Omecamtiv mecarbil and the inhibitor Mavacamten. In this work, we reveal by X-ray crystallography that both drugs target the same pocket and stabilize a pre-stroke structural state, with only few local differences. All atoms molecular dynamics simulations reveal how these molecules can have antagonistic impact on the allostery of the motor by comparing ß-cardiac myosin in the apo form or bound to Omecamtiv mecarbil or Mavacamten. Altogether, our results provide the framework for rational drug development for the purpose of personalized medicine.

5.
Dev Cell ; 58(22): 2477-2494.e8, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37875118

ABSTRACT

Cilia protrude from the cell surface and play critical roles in intracellular signaling, environmental sensing, and development. Reduced actin-dependent contractility and intracellular trafficking are both required for ciliogenesis, but little is known about how these processes are coordinated. Here, we identified a Rac1- and Rab35-binding protein with a truncated BAR (Bin/amphiphysin/Rvs) domain that we named MiniBAR (also known as KIAA0355/GARRE1), which plays a key role in ciliogenesis. MiniBAR colocalizes with Rac1 and Rab35 at the plasma membrane and on intracellular vesicles trafficking to the ciliary base and exhibits fast pulses at the ciliary membrane. MiniBAR depletion leads to short cilia, resulting from abnormal Rac-GTP/Rho-GTP levels and increased acto-myosin-II-dependent contractility together with defective trafficking of IFT88 and ARL13B into cilia. MiniBAR-depleted zebrafish embryos display dysfunctional short cilia and hallmarks of ciliopathies, including left-right asymmetry defects. Thus, MiniBAR is a dual Rac and Rab effector that controls both actin cytoskeleton and membrane trafficking for ciliogenesis.


Subject(s)
Cytoskeletal Proteins , Zebrafish , Animals , Zebrafish/metabolism , Cytoskeletal Proteins/metabolism , Signal Transduction , Carrier Proteins/metabolism , Cilia/metabolism , Guanosine Triphosphate/metabolism , rab GTP-Binding Proteins/metabolism
6.
Nat Commun ; 14(1): 6732, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872146

ABSTRACT

Myosin VI (Myo6) is the only minus-end directed nanomotor on actin, allowing it to uniquely contribute to numerous cellular functions. As for other nanomotors, the proper functioning of Myo6 relies on precise spatiotemporal control of motor activity via a poorly defined off-state and interactions with partners. Our structural, functional, and cellular studies reveal key features of myosin regulation and indicate that not all partners can activate Myo6. TOM1 and Dab2 cannot bind the off-state, while GIPC1 binds Myo6, releases its auto-inhibition and triggers proximal dimerization. Myo6 partners thus differentially recruit Myo6. We solved a crystal structure of the proximal dimerization domain, and show that its disruption compromises endocytosis in HeLa cells, emphasizing the importance of Myo6 dimerization. Finally, we show that the L926Q deafness mutation disrupts Myo6 auto-inhibition and indirectly impairs proximal dimerization. Our study thus demonstrates the importance of partners in the control of Myo6 auto-inhibition, localization, and activation.


Subject(s)
Actins , Myosin Heavy Chains , Humans , HeLa Cells , Dimerization , Actins/metabolism , Myosin Heavy Chains/metabolism
7.
Open Biol ; 13(9): 230122, 2023 09.
Article in English | MEDLINE | ID: mdl-37726093

ABSTRACT

KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.


Subject(s)
Kinesins , Microtubules , Cryoelectron Microscopy , Kinesins/genetics , Binding Sites , Cell Division
8.
Nat Commun ; 14(1): 3463, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308472

ABSTRACT

Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.


Subject(s)
Antimalarials , Folic Acid Antagonists , Nonmuscle Myosin Type IIA , Plasmodium falciparum , Actins , Biological Assay
9.
Nat Commun ; 14(1): 3166, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37258552

ABSTRACT

To save energy and precisely regulate cardiac contractility, cardiac muscle myosin heads are sequestered in an 'off' state that can be converted to an 'on' state when exertion is increased. The 'off' state is equated with a folded-back structure known as the interacting-heads motif (IHM), which is a regulatory feature of all class-2 muscle and non-muscle myosins. We report here the human ß-cardiac myosin IHM structure determined by cryo-electron microscopy to 3.6 Å resolution, providing details of all the interfaces stabilizing the 'off' state. The structure shows that these interfaces are hot spots of hypertrophic cardiomyopathy mutations that are thought to cause hypercontractility by destabilizing the 'off' state. Importantly, the cardiac and smooth muscle myosin IHM structures dramatically differ, providing structural evidence for the divergent physiological regulation of these muscle types. The cardiac IHM structure will facilitate development of clinically useful new molecules that modulate IHM stability.


Subject(s)
Cardiac Myosins , Cardiomyopathy, Hypertrophic , Humans , Ventricular Myosins/chemistry , Ventricular Myosins/genetics , Cryoelectron Microscopy , Heart , Cardiomyopathy, Hypertrophic/genetics
10.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131793

ABSTRACT

During normal levels of exertion, many cardiac muscle myosin heads are sequestered in an off-state even during systolic contraction to save energy and for precise regulation. They can be converted to an on-state when exertion is increased. Hypercontractility caused by hypertrophic cardiomyopathy (HCM) myosin mutations is often the result of shifting the equilibrium toward more heads in the on-state. The off-state is equated with a folded-back structure known as the interacting head motif (IHM), which is a regulatory feature of all muscle myosins and class-2 non-muscle myosins. We report here the human ß-cardiac myosin IHM structure to 3.6 Å resolution. The structure shows that the interfaces are hot spots of HCM mutations and reveals details of the significant interactions. Importantly, the structures of cardiac and smooth muscle myosin IHMs are dramatically different. This challenges the concept that the IHM structure is conserved in all muscle types and opens new perspectives in the understanding of muscle physiology. The cardiac IHM structure has been the missing puzzle piece to fully understand the development of inherited cardiomyopathies. This work will pave the way for the development of new molecules able to stabilize or destabilize the IHM in a personalized medicine approach. *This manuscript was submitted to Nature Communications in August 2022 and dealt efficiently by the editors. All reviewers received this version of the manuscript before 9 208 August 2022. They also received coordinates and maps of our high resolution structure on the 18 208 August 2022. Due to slowness of at least one reviewer, this contribution was delayed for acceptance by Nature Communications and we are now depositing in bioRxiv the originally submitted version written in July 2022 for everyone to see. Indeed, two bioRxiv contributions at lower resolution but adding similar concepts on thick filament regulation were deposited this week in bioRxiv, one of the contributions having had access to our coordinates. We hope that our data at high resolution will be helpful for all readers that appreciate that high resolution information is required to build accurate atomic models and discuss implications for sarcomere regulation and the effects of cardiomyopathy mutations on heart muscle function.

11.
Elife ; 102021 11 23.
Article in English | MEDLINE | ID: mdl-34812732

ABSTRACT

The molecular motor myosin undergoes a series of major structural transitions during its force-producing motor cycle. The underlying mechanism and its coupling to ATP hydrolysis and actin binding are only partially understood, mostly due to sparse structural data on actin-bound states of myosin. Here, we report 26 high-resolution cryo-EM structures of the actomyosin-V complex in the strong-ADP, rigor, and a previously unseen post-rigor transition state that binds the ATP analog AppNHp. The structures reveal a high flexibility of myosin in each state and provide valuable insights into the structural transitions of myosin-V upon ADP release and binding of AppNHp, as well as the actomyosin interface. In addition, they show how myosin is able to specifically alter the structure of F-actin.


Subject(s)
Actomyosin/ultrastructure , Myosin Type V/ultrastructure , Actins/metabolism , Animals , Biomechanical Phenomena , Chickens , Humans , Protein Binding , Rabbits
12.
Antioxidants (Basel) ; 10(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34356314

ABSTRACT

The human mutant cardiac α-actins p.A295S or p.R312H and p.E361G, correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by the baculovirus/Sf21 insect cell system and purified to homogeneity. The purified cardiac actins maintained their native state but showed differences in Ca2+-sensitivity to stimulate the myosin-subfragment1 ATPase. Here we analyzed the interactions of these c-actins with actin-binding and -modifying proteins implicated in cardiomyocyte differentiation. We demonstrate that Arp2/3 complex and the formin mDia3 stimulated the polymerization rate and extent of the c-actins, albeit to different degrees. In addition, we tested the effect of the MICAL-1 monooxygenase, which modifies the supramolecular actin organization during development and adaptive processes. MICAL-1 oxidized these c-actin variants and induced their de-polymerization, albeit at different rates. Transfection experiments using MDCK cells demonstrated the preferable incorporation of wild type and p.A295S c-actins into their microfilament system but of p.R312H and p.E361G actins into the submembranous actin network. Transduction of neonatal rat cardiomyocytes with adenoviral constructs coding HA-tagged c-actin variants showed their incorporation into microfilaments after one day in culture and thereafter into thin filaments of nascent sarcomeric structures at their plus ends (Z-lines) except the p.E361G mutant, which preferentially incorporated at the minus ends.

13.
Elife ; 102021 06 03.
Article in English | MEDLINE | ID: mdl-34080538

ABSTRACT

Mitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in Schizosaccharomyces pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, creating a link between the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.


Subject(s)
Kinesins/metabolism , Meiosis , Microtubules/metabolism , Molecular Motor Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Spindle Apparatus/metabolism , Gene Expression Regulation, Fungal , Kinesins/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/genetics , Molecular Motor Proteins/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction , Spindle Apparatus/genetics , Time Factors
14.
Elife ; 102021 05 27.
Article in English | MEDLINE | ID: mdl-34042588

ABSTRACT

Filopodia are thin, actin-based structures that cells use to interact with their environments. Filopodia initiation requires a suite of conserved proteins but the mechanism remains poorly understood. The actin polymerase VASP and a MyTH-FERM (MF) myosin, DdMyo7 in amoeba, are essential for filopodia initiation. DdMyo7 is localized to dynamic regions of the actin-rich cortex. Analysis of VASP mutants and treatment of cells with anti-actin drugs shows that myosin recruitment and activation in Dictyostelium requires localized VASP-dependent actin polymerization. Targeting of DdMyo7 to the cortex alone is not sufficient for filopodia initiation; VASP activity is also required. The actin regulator locally produces a cortical actin network that activates myosin and together they shape the actin network to promote extension of parallel bundles of actin during filopodia formation. This work reveals how filopodia initiation requires close collaboration between an actin-binding protein, the state of the actin cytoskeleton and MF myosin activity.


Subject(s)
Actins/metabolism , Cell Adhesion Molecules/metabolism , Dictyostelium/enzymology , Microfilament Proteins/metabolism , Myosins/metabolism , Phosphoproteins/metabolism , Protozoan Proteins/metabolism , Pseudopodia/enzymology , Actins/genetics , Cell Adhesion Molecules/genetics , Dictyostelium/genetics , Microfilament Proteins/genetics , Movement , Myosins/genetics , Phosphoproteins/genetics , Protozoan Proteins/genetics , Pseudopodia/genetics , Time Factors
15.
Curr Biol ; 31(10): R586-R602, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34033792

ABSTRACT

Filopodia, microvilli and stereocilia represent an important group of plasma membrane protrusions. These specialized projections are supported by parallel bundles of actin filaments and have critical roles in sensing the external environment, increasing cell surface area, and acting as mechanosensors. While actin-associated proteins are essential for actin-filament elongation and bundling in these protrusions, myosin motors have a surprising role in the formation and extension of filopodia and stereocilia and in the organization of microvilli. Actin regulators and specific myosins collaborate in controlling the length of these structures. Myosins can transport cargoes along the length of these protrusions, and, in the case of stereocilia and microvilli, interactions with adaptors and cargoes can also serve to anchor adhesion receptors to the actin-rich core via functionally conserved motor-adaptor complexes. This review highlights recent progress in understanding the diverse roles myosins play in filopodia, microvilli and stereocilia.


Subject(s)
Pseudopodia , Stereocilia , Actins , Microvilli , Myosins
16.
Oncogene ; 40(23): 4019-4032, 2021 06.
Article in English | MEDLINE | ID: mdl-34012098

ABSTRACT

Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors, particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP, NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to invasive transition during breast cancer progression.


Subject(s)
Breast Neoplasms/metabolism , Dynamin II/metabolism , Extracellular Matrix/metabolism , Matrix Metalloproteinase 14/metabolism , NM23 Nucleoside Diphosphate Kinases/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line , Cell Movement/physiology , Female , Humans , Matrix Metalloproteinase 14/genetics , Mice , Mice, Nude , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Xenograft Model Antitumor Assays
17.
C R Biol ; 343(4): 53-78, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33988324

ABSTRACT

Life is driven by awe-inspiring coordinated movements observed in cells and tissues. In each cell, nm-size molecular motor proteins contribute to these movements as they power numerous mechanical processes with precision and complex orchestration. For the multiple functions that an eukaryotic cell accomplish, motility is essential both at molecular and cellular scales. Tissue morphogenesis, cell migration, cell division or cell differentiation are all controlled by the precise action of such nanomotors that work on cytoskeletal tracks using ATP as fuel. The study of motility has a long history and scientists of all disciplines have contributed to its understanding. The first part of this review compares myosin and kinesin motors to describe the principles underlying how motors convert chemical energy into mechanical movement. In a second part, I will describe how sequence differences selected through evolution can lead to distinct force production output despite a common mechanism. Motors within a superfamily can thus carry out distinct functions in cells. Such differences give rise to their individual, specific motility properties, including reversal of directionality or ability to organize cytoskeletal tracks. The power of structural biology to reveal unexpected and surprising structures, with certainty when visualized at atomic resolution, has been a great advantage for this field. The critical insights gained from the structures can be carefully tested with functional experiments, leading to progress in defining the role motors play in cells. Last, I will describe how targeting these motors can be beneficial for human health. Allosteric sites for specific small molecules can act as activators or inhibitors of the force produced by these nanomotors. While frequent sites of mutations in these motors can lead to disease phenotypes, high therapeutic potential of allosteric effectors is now established for heart muscle diseases and should be extended to treat other pathologies.


Les mouvements coordonnés au cœur de la vie des tissus biologiques sont impressionnants dans leur complexité et leur précision. Dans chaque cellule, des nano-moteurs moléculaires (un millionième de fois plus petits que le millimètre) contribuent à ces mouvements en effectuant de nombreuses actions mécaniques avec précision et une orchestration complexe. Les multiples fonctions qu'une cellule eucaryote accomplit dépendent de la motilité (capacité à se mouvoir ou à exercer une force), qui est nécessaire à l'échelle moléculaire, comme cellulaire. La morphogenèse tissulaire, la migration cellulaire, la division ou la différenciation cellulaire sont toutes contrôlées par l'action de ces moteurs moléculaires qui travaillent sur les pistes du cytosquelette en utilisant l'ATP comme combustible. L'étude de la motilité a une longue histoire et des scientifiques de toutes les disciplines ont contribué à sa compréhension. La première partie de cet exposé compare les moteurs myosine et kinésine pour décrire les principes qui sous-tendent la façon dont l'énergie chimique est convertie en mouvement mécanique. Dans une deuxième partie, l'exposé décrit comment des fonctions de motilité précises et distinctes sont effectuées au sein des cellules par des moteurs dont la séquence s'est adaptée au cours de l'évolution. Ces différences de séquence conduisent à des propriétés de motilité individuelles spécifiques, notamment l'inversion de la direction ou la capacité à organiser les pistes cytosquelettiques, ainsi que la capacité des moteurs à travailler sous contrainte. Un grand avantage de la biologie structurale dans ce domaine est sa puissance à révéler des informations structurales inattendues et surprenantes avec de plus une quasi-certitude lorsque ces molécules sont visualisées à une résolution atomique. Ces informations sont essentielles pour guider les expériences fonctionnelles testant diverses hypothèses avec précision et définissant ainsi le rôle cellulaire de ces moteurs moléculaires. Dans une dernière partie, l'exposé décrit l'importance de cibler ces moteurs dans le cadre de maladies humaines. Des mutations de ces enzymes allostériques peuvent en effet fréquemment conduire à des maladies génétiques. En exploitant des sites allostériques du moteur, de petites molécules chimiques (effecteurs) peuvent agir comme activateurs ou inhibiteurs de la force produite et certains candidats-médicaments sont aujourd'hui en phase clinique. Le potentiel thérapeutique élevé de ces effecteurs allostériques est établi pour les maladies du muscle cardiaque et devrait être étendu pour traiter d'autres pathologies.


Subject(s)
Molecular Motor Proteins , Myosins , Cell Movement , Humans , Kinesins
18.
Nat Commun ; 12(1): 1892, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767187

ABSTRACT

Plasmodium falciparum, the causative agent of malaria, moves by an atypical process called gliding motility. Actomyosin interactions are central to gliding motility. However, the details of these interactions remained elusive until now. Here, we report an atomic structure of the divergent Plasmodium falciparum actomyosin system determined by electron cryomicroscopy at the end of the powerstroke (Rigor state). The structure provides insights into the detailed interactions that are required for the parasite to produce the force and motion required for infectivity. Remarkably, the footprint of the myosin motor on filamentous actin is conserved with respect to higher eukaryotes, despite important variability in the Plasmodium falciparum myosin and actin elements that make up the interface. Comparison with other actomyosin complexes reveals a conserved core interface common to all actomyosin complexes, with an ancillary interface involved in defining the spatial positioning of the motor on actin filaments.


Subject(s)
Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Cell Movement/physiology , Plasmodium falciparum/physiology , Plasmodium falciparum/ultrastructure , Actins/metabolism , Cryoelectron Microscopy , Malaria, Falciparum/parasitology , Myosins/metabolism , Protein Conformation , Protozoan Proteins/metabolism
19.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33035452

ABSTRACT

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Subject(s)
Muscle, Skeletal/metabolism , Skeletal Muscle Myosins/drug effects , Skeletal Muscle Myosins/genetics , Adult , Animals , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cell Line , Drug Delivery Systems , Female , Humans , Male , Mice , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Muscle, Skeletal/physiology , Myosins/drug effects , Myosins/genetics , Myosins/metabolism , Protein Isoforms , Rats , Rats, Wistar , Skeletal Muscle Myosins/metabolism
20.
Elife ; 92020 10 13.
Article in English | MEDLINE | ID: mdl-33046215

ABSTRACT

Parasites from the genus Plasmodium are the causative agents of malaria. The mobility, infectivity, and ultimately pathogenesis of Plasmodium falciparum rely on a macromolecular complex, called the glideosome. At the core of the glideosome is an essential and divergent Myosin A motor (PfMyoA), a first order drug target against malaria. Here, we present the full-length structure of PfMyoA in two states of its motor cycle. We report novel interactions that are essential for motor priming and the mode of recognition of its two light chains (PfELC and MTIP) by two degenerate IQ motifs. Kinetic and motility assays using PfMyoA variants, along with molecular dynamics, demonstrate how specific priming and atypical sequence adaptations tune the motor's mechano-chemical properties. Supported by evidence for an essential role of the PfELC in malaria pathogenesis, these structures provide a blueprint for the design of future anti-malarials targeting both the glideosome motor and its regulatory elements.


Subject(s)
Antimalarials/pharmacology , Nonmuscle Myosin Type IIA/chemistry , Plasmodium falciparum/drug effects , Protozoan Proteins/chemistry , Plasmodium falciparum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...