Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(14): 143402, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30339415

ABSTRACT

In a combined experimental and theoretical study, we probe the dissociative electron attachment in isocyanic acid HNCO. The experimental absolute cross section for the NCO^{-} fragment shows a sharp onset and fine structures near the threshold. The autoionizing state responsible for the dissociative attachment is found in both the R-matrix calculation and using analytic continuation in the coupling constant. The involved A^{'} resonance has a mixed π^{*}/σ^{*} character along the dissociating bond and thus combines the effects of nonzero electron angular momentum and dipole-supported states. This leads to unusual behavior of its width at various geometries. Because the potential energy gradient of the autoionizing state points essentially in the direction of the N─H bond, nuclear dynamics can be described by a one-dimensional nonlocal model. The results agree with the experiment both quantitatively and qualitatively. The present system may be a prototype for interpretation of the dissociative electron attachment process in a number of other polyatomic systems.

2.
J Chem Phys ; 142(1): 014304, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25573558

ABSTRACT

Reactive collisions between O(-) and H2 have been studied experimentally at temperatures ranging from 10 K to 300 K using a cryogenic radiofrequency 22-pole ion trap. The rate coefficients for associative detachment, leading to H2O + e(-), increase with decreasing temperature and reach a flat maximum of 1.8 × 10(-9) cm(3) s(-1) at temperatures between 20 K and 80 K. There, the overall reaction probability is in good agreement with a capture model indicating efficient non-adiabatic couplings between the entrance potential energy surfaces. Classical trajectory calculations on newly calculated potential energy surfaces as well as the topology of the conical intersection seam leading to the neutral surface corroborate this. The formation of OH(-) + H via hydrogen transfer, although occurring with a probability of a few percent only (about 5 × 10(-11) cm(3) s(-1) at temperatures 10-300 K), indicates that there are reaction paths, where electron detachment is avoided.

SELECTION OF CITATIONS
SEARCH DETAIL
...