Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 459(7249): 974-7, 2009 Jun 18.
Article in English | MEDLINE | ID: mdl-19536262

ABSTRACT

The feedback between fluid migration and rock deformation in mid-crustal shear zones is acknowledged as being critical for earthquake nucleation, the initiation of subduction zones and the formation of mineral deposits. The importance of this poorly understood feedback is further highlighted by evidence for shear-zone-controlled advective flow of fluids in the ductile lower crust and the recognition that deformation-induced grain-scale porosity is a key to large-scale geodynamics. Fluid migration in the middle crust cannot be explained in terms of classical concepts. The environment is considered too hot for a dynamic fracture-sustained permeability as in the upper crust, and fluid pathways are generally too deformed to be controlled by equilibrium wetting angles that apply to hotter, deeper environments. Here we present evidence that mechanical and chemical potentials control a syndeformational porosity generation in mid-crustal shear zones. High-resolution synchrotron X-ray tomography and scanning electron microscopy observations allow us to formulate a model for fluid migration in shear zones where a permeable porosity is dynamically created by viscous grain-boundary sliding, creep cavitation, dissolution and precipitation. We propose that syndeformational fluid migration in our 'granular fluid pump' model is a self-sustained process controlled by the explicit role of the rate of entropy production of the underlying irreversible mechanical and chemical microprocesses. The model explains fluid transfer through the middle crust, where strain localization in the creep regime is required for plate tectonics, the formation of giant ore deposits, mantle degassing and earthquake nucleation. Our findings provide a key component for the understanding of creep instabilities in the middle crust.

2.
Science ; 296(5570): 1109-11, 2002 May 10.
Article in English | MEDLINE | ID: mdl-12004127

ABSTRACT

Impact glass associated with 11 elongate depressions in the Pampean Plain of Argentina, north of the city of Rio Cuarto, was suggested to be proximal ejecta related to a highly oblique impact event. We have identified about 400 additional elongate features in the area that indicate an aeolian, rather than an impact, origin. We have also dated fragments of glass found at the Rio Cuarto depressions; the age is similar to that of glass recovered 800 kilometers to the southeast. This material may be tektite glass from an impact event around 0.48 million years ago, representing a new tektite strewn field.

SELECTION OF CITATIONS
SEARCH DETAIL
...