Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Eur J Hum Genet ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605124

ABSTRACT

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.

2.
Front Endocrinol (Lausanne) ; 14: 1231043, 2023.
Article in English | MEDLINE | ID: mdl-38027197

ABSTRACT

Congenital hyperinsulinism (CHI) is a condition characterised by severe and recurrent hypoglycaemia in infants and young children caused by inappropriate insulin over-secretion. CHI is of heterogeneous aetiology with a significant genetic component and is often unresponsive to standard medical therapy options. The treatment of CHI can be multifaceted and complex, requiring multidisciplinary input. It is important to manage hypoglycaemia in CHI promptly as the risk of long-term neurodisability arising from neuroglycopaenia is high. The UK CHI consensus on the practice and management of CHI was developed to optimise and harmonise clinical management of patients in centres specialising in CHI as well as in non-specialist centres engaged in collaborative, networked models of care. Using current best practice and a consensus approach, it provides guidance and practical advice in the domains of diagnosis, clinical assessment and treatment to mitigate hypoglycaemia risk and improve long term outcomes for health and well-being.


Subject(s)
Congenital Hyperinsulinism , Child , Infant , Humans , Child, Preschool , Consensus , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/therapy , Pancreatectomy , United Kingdom
3.
Diabetologia ; 66(11): 1997-2006, 2023 11.
Article in English | MEDLINE | ID: mdl-37653058

ABSTRACT

AIMS/HYPOTHESIS: In pregnancies where the mother has glucokinase-MODY (GCK-MODY), fetal growth is determined by fetal genotype. When the fetus inherits a maternal pathogenic GCK variant, normal fetal growth is anticipated, and insulin treatment of maternal hyperglycaemia is not recommended. At present, fetal genotype is estimated from measurement of fetal abdominal circumference on ultrasound. Non-invasive prenatal testing of fetal GCK genotype (NIPT-GCK) using cell-free DNA in maternal blood has recently been developed. We aimed to compare the diagnostic accuracy of NIPT-GCK with that of ultrasound, and determine the feasibility of using NIPT-GCK to guide pregnancy management. METHODS: We studied an international cohort of pregnant women with hyperglycaemia due to GCK-MODY. We compared the diagnostic accuracy of NIPT-GCK with that of measurement of fetal abdominal circumference at 28 weeks' gestation (n=38) using a directly genotyped offspring sample as the reference standard. In a feasibility study, we assessed the time to result given to clinicians in 43 consecutive pregnancies affected by GCK-MODY between July 2019 and September 2021. RESULTS: In terms of diagnostic accuracy, NIPT-GCK was more sensitive and specific than ultrasound in predicting fetal genotype (sensitivity 100% and specificity 96% for NIPT-GCK vs sensitivity 53% and specificity 61% for fetal abdominal circumference 75th percentile). In terms of feasibility, a valid NIPT-GCK fetal genotype (≥95% probability) was reported in all 38 pregnancies with an amenable variant and repeated samples when needed. The median time to report was 5 weeks (IQR 3-8 weeks). For the 25 samples received before 20 weeks' gestation, results were reported at a median gestational age of 20 weeks (IQR 18-24), with 23/25 (92%) reported before 28 weeks. CONCLUSIONS/INTERPRETATION: Non-invasive prenatal testing of fetal genotype in GCK-MODY pregnancies is highly accurate and is capable of providing a result before the last trimester for most patients. This means that non-invasive prenatal testing of fetal genotype is the optimal approach to management of GCK-MODY pregnancies.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Pregnancy , Humans , Female , Infant , Glucokinase/genetics , Feasibility Studies , Precision Medicine , Diabetes Mellitus, Type 2/genetics , Hyperglycemia/genetics , Mutation
4.
J Clin Immunol ; 43(3): 662-669, 2023 04.
Article in English | MEDLINE | ID: mdl-36600150

ABSTRACT

Pathogenic FOXP3 variants cause immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a progressive autoimmune disease resulting from disruption of the regulatory T cell (Treg) compartment. Assigning pathogenicity to novel variants in FOXP3 is challenging due to the heterogeneous phenotype and variable immunological abnormalities. The number of cells with demethylation at the Treg cell-specific demethylated region (TSDR) is an independent biomarker of IPEX. We aimed to investigate if diagnosing IPEX at presentation with isolated diabetes could allow for effective monitoring of disease progression and assess whether TSDR analysis can aid FOXP3 variant classification and predict disease course. We describe a large genetically diagnosed IPEX cohort (n = 65) and 13 individuals with other monogenic autoimmunity subtypes in whom we quantified the proportion of cells with FOXP3 TSDR demethylation, normalized to the number with CD4 demethylation (%TSDR/CD4) and compare them to 29 unaffected controls. IPEX patients presenting with isolated diabetes (50/65, 77%) often later developed enteropathy (20/50, 40%) with a median interval of 23.5 weeks. %TSDR/CD4 was a good discriminator of IPEX vs. unaffected controls (ROC-AUC 0.81, median 13.6% vs. 8.5%, p < 0.0001) with higher levels of demethylation associated with more severe disease. Patients with other monogenic autoimmunity had a similar %TSDR/CD4 to controls (median 8.7%, p = 1.0). Identifying increased %TSDR/CD4 in patients with novel FOXP3 mutations presenting with isolated diabetes facilitates diagnosis and could offer an opportunity to monitor patients and begin immune modulatory treatment before onset of severe enteropathy.


Subject(s)
Diabetes Mellitus , Genetic Diseases, X-Linked , Humans , T-Lymphocytes, Regulatory , Diarrhea , Genetic Diseases, X-Linked/genetics , Forkhead Transcription Factors/genetics , Mutation
5.
J Clin Endocrinol Metab ; 108(3): 680-687, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36239000

ABSTRACT

CONTEXT: Congenital hyperinsulinism (HI) is characterized by inappropriate insulin secretion despite low blood glucose. Persistent HI is often monogenic, with the majority of cases diagnosed in infancy. Less is known about the contribution of monogenic forms of disease in those presenting in childhood. OBJECTIVE: We investigated the likelihood of finding a genetic cause in childhood-onset HI and explored potential factors leading to later age at presentation of disease. METHODS: We screened known disease-causing genes in 1848 individuals with HI, referred for genetic testing as part of routine clinical care. Individuals were classified as infancy-onset (diagnosed with HI < 12 months of age) or childhood-onset (diagnosed at age 1-16 years). We assessed clinical characteristics and the genotypes of individuals with monogenic HI diagnosed in childhood to gain insights into the later age at diagnosis of HI in these children. RESULTS: We identified the monogenic cause in 24% (n = 42/173) of the childhood-onset HI cohort; this was significantly lower than the proportion of genetic diagnoses in infancy-onset cases (74.5% [n = 1248/1675], P < 0.00001). Most (75%) individuals with genetically confirmed childhood-onset HI were diagnosed before 2.7 years, suggesting these cases represent the tail end of the normal distribution in age at diagnosis. This is supported by the finding that 81% of the variants identified in the childhood-onset cohort were detected in those diagnosed in infancy. CONCLUSION: We have shown that monogenic HI is an important cause of hyperinsulinism presenting outside of infancy. Genetic testing should be considered in children with persistent hyperinsulinism, regardless of age at diagnosis.


Subject(s)
Congenital Hyperinsulinism , Hyperinsulinism , Hypoglycemia , Adolescent , Child , Child, Preschool , Humans , Infant , Blood Glucose , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/genetics , Genetic Testing , Hyperinsulinism/diagnosis , Hyperinsulinism/genetics , Hyperinsulinism/complications , Pancreatic Diseases/genetics , Hypoglycemia/diagnosis , Hypoglycemia/genetics
6.
Endocr Connect ; 12(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-35951311

ABSTRACT

Background: Hyperinsulinism/hyperammonemia (HI/HA) syndrome is the second most common type of congenital hyperinsulinism caused by an activating GLUD1 mutation. Objective: The aim of this study was to determine the clinical profile and long-term neurological outcomes in children with HI/HA syndrome. Method: This study is a retrospective review of patients with GLUD1 mutation, treated at two centers in the UK and Russia, over a 15-year period. Different risk factors for neuro-developmental disorders were analysed by Mann-Whitney U test and Fisher's exact P test. Results: We identified 25 cases with GLUD1 mutations (12 males). Median age of presentation was 7 months (12 h-18 months). Hypoglycaemic seizures were the presenting feature in 24 (96%) cases. Twenty four cases responded to diazoxide and protein restriction whilst one patient underwent partial pancreatectomy. In total, 13 cases (52%) developed neurodevelopmental manifestations. Epilepsy (n = 9/25, 36%), learning difficulties (n = 8/25, 32%) and speech delay (n = 8/25, 32%) were the most common neurological manifestation. Median age of presentation for epilepsy was 12 months with generalised tonic-clonic seizures being the most common (n = 4/9, 44.4%) followed by absence seizures (n = 3/9, 33.3%). Early age of presentation (P = 0.02), diazoxide dose (P = 0.04) and a mutation in exon 11 or 12 (P = 0.01) were associated with neurological disorder. Conclusion: HI/HA syndrome is associated with wide spectrum of neurological disorders. These neurological manifestations were more frequent in cases with mutations affecting the GTP-binding site of GLUD1 in our cohort.

7.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Article in English | MEDLINE | ID: mdl-36333503

ABSTRACT

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Subject(s)
Congenital Hyperinsulinism , Insulin-Secreting Cells , Humans , Hexokinase/genetics , Hexokinase/metabolism , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Regulatory Sequences, Nucleic Acid/genetics
8.
J Endocr Soc ; 6(6): bvac033, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35592516

ABSTRACT

Context: In focal congenital hyperinsulinism (CHI), localized clonal expansion of pancreatic ß-cells causes excess insulin secretion and severe hypoglycemia. Surgery is curative, but not all lesions are amenable to surgery. Objective: We describe surgical and nonsurgical outcomes of focal CHI in a national cohort. Methods: Patients with focal CHI were retrospectively reviewed at 2 specialist centers, 2003-2018. Results: Of 59 patients with focal CHI, 57 had heterozygous mutations in ABCC8/KCNJ11 (51 paternally inherited, 6 de novo). Fluorine-18 L-3,4 dihydroxyphenylalanine positron emission tomography computed tomography scan identified focal lesions in 51 patients. In 5 patients, imaging was inconclusive; the diagnosis was established by frozen section histopathology in 3 patients, a lesion was not identified in 1 patient, and 1 declined surgery. Most patients (n = 56) were unresponsive to diazoxide, of whom 33 were unresponsive or partially responsive to somatostatin receptor analog (SSRA) therapy. Fifty-five patients underwent surgery: 40 had immediate resolution of CHI, 10 had persistent hypoglycemia and a focus was not identified on biopsy in 5. In the 10 patients with persistent hypoglycemia, 7 underwent further surgery with resolution in 4 and ongoing hypoglycemia requiring SSRA in 3. Nine (15% of cohort) patients (1 complex surgical access; 4 biopsy negative; 4 declined surgery) were managed conservatively; medication was discontinued in 8 children at a median (range) age 2.4 (1.5-7.7) years and 1 remains on SSRA at 16 years with improved fasting tolerance and reduction in SSRA dose. Conclusion: Despite a unifying genetic basis of disease, we report inherent heterogeneity in focal CHI patients impacting outcomes of both surgical and medical management.

9.
Pediatr Diabetes ; 23(4): 457-461, 2022 06.
Article in English | MEDLINE | ID: mdl-35294086

ABSTRACT

BACKGROUND: Hyperinsulinism results from inappropriate insulin secretion during hypoglycaemia. Down syndrome is causally linked to a number of endocrine disorders including Type 1 diabetes and neonatal diabetes. We noted a high number of individuals with Down syndrome referred for hyperinsulinism genetic testing, and therefore aimed to investigate whether the prevalence of Down syndrome was increased in our hyperinsulinism cohort compared to the population. METHODS: We identified individuals with Down syndrome referred for hyperinsulinism genetic testing to the Exeter Genomics Laboratory between 2008 and 2020. We sequenced the known hyperinsulinism genes in all individuals and investigated their clinical features. RESULTS: We identified 11 individuals with Down syndrome in a cohort of 2011 patients referred for genetic testing for hyperinsulinism. This represents an increased prevalence compared to the population (2.5/2011 expected vs. 11/2011 observed, p = 6.8 × 10-5 ). A pathogenic ABCC8 mutation was identified in one of the 11 individuals. Of the remaining 10 individuals, five had non-genetic risk factors for hyperinsulinism resulting from the Down syndrome phenotype: intrauterine growth restriction, prematurity, gastric/oesophageal surgery, and asparaginase treatment for leukaemia. For five individuals no risk factors for hypoglycaemia were reported although two of these individuals had transient hyperinsulinism and one was lost to follow-up. CONCLUSIONS: Down syndrome is more common in patients with hyperinsulinism than in the population. This is likely due to an increased burden of non-genetic risk factors resulting from the Down syndrome phenotype. Down syndrome should not preclude genetic testing as coincidental monogenic hyperinsulinism and Down syndrome is possible.


Subject(s)
Congenital Hyperinsulinism , Down Syndrome , Congenital Hyperinsulinism/complications , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/epidemiology , Down Syndrome/complications , Down Syndrome/diagnosis , Down Syndrome/epidemiology , Genetic Testing , Humans , Mutation , Referral and Consultation , Risk Factors
10.
Indian Pediatr ; 59(2): 105-109, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34992182

ABSTRACT

BACKGROUND: There is limited data from India regarding medical management of congenital hyperinsulinism (CHI). OBJECTIVE: To study the molecular diagnosis, medical management and outcomes of children with CHI. STUDY DESIGN: Ambispective. PARTICIPANTS: Children with CHI admitted in from December, 2011 till March, 2020 at a tertiary care referral hospital. OUTCOMES: Clinical and genetic profile, treatment, and response. RESULTS: 42 children with a median age of 3 days (range 1 day to 6 years) were enrolled, of which 23 (54.7%) were diazoxide-responsive. Mutations were identified in 28 out of 41 (68.2%) patients. The commonest gene affected was ABCC8 in 22 patients. The pathogenic variant c.331G>A in ABCC8 gene was identified in 6 unrelated cases from one community. Good response to daily octreotide was seen in 13 of the 19 (68.4%) diazoxide-unresponsive patients. Monthly long-acting octreotide was initiated and daily octreotide could be stopped or tapered in 9 patients. Sirolimus was tried with variable response in 6 patients but was discontinued in 5 due to adverse effects. Four patients had focal CHI, of which one underwent partial pancreatic resection. The disease severity reduced with age and neurodevelopment was good in the patients with identifiable genetic defects who were optimally managed. CONCLUSIONS: Medical management of CHI is effective, if compliance can be ensured, with good quality of life and neurological outcomes.


Subject(s)
Congenital Hyperinsulinism , Quality of Life , Child , Child, Preschool , Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/therapy , Diazoxide/therapeutic use , Humans , Infant , Infant, Newborn , Mutation , Octreotide/therapeutic use , Sulfonylurea Receptors/genetics
11.
Eur J Endocrinol ; 186(4): 417-427, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35089870

ABSTRACT

OBJECTIVE: The phenotype mediated by HNF4A/HNF1A mutations is variable and includes diazoxide-responsive hyperinsulinaemic hypoglycaemia (HH) and maturity-onset diabetes of the young (MODY). DESIGN: We characterised an international multicentre paediatric cohort of patients with HNF4Aor HNF1Amutations presenting with HH over a 25-year period (1995-2020). METHODS: Clinical and genetic analysis data from five centres were obtained. Diazoxide responsiveness was defined as the ability to maintain normoglycaemia without intravenous glucose. Macrosomia was defined as a birth weight ≥90th centile. SPSS v.27.1 was used for data analysis. RESULTS: A total of 34 patients (70.6% female, n = 24) with a mean age of 7.1 years (s.d. 6.4) were included. A total of 21 different heterozygous HNF4Amutations were identified in 29 patients (four novels). Four different previously described heterozygous HNF1A mutations were detected in five patients. Most (97.1%, n = 33) developed hypoglycaemia by day 2 of life. The mean birth weight was 3.8 kg (s.d. 0.8), with most infants macrosomic (n = 21, 61.8%). Diazoxide was commenced in 28 patients (82.3%); all responded. HH resolved in 20 patients (58.8%) following a median of 0.9 years (interquartile range (IQR): 0.2-6.8). Nine patients (n = 9, 26.5%) had developmental delay. Two patients developed Fanconi syndrome (p.Arg63Trp, HNF4A) and four had other renal or hepatic findings. Five (14.7%) developed MODY at a median of 11.0 years (IQR: 9.0-13.9). Of patients with inherited mutations (n = 25, 73.5%), a family history of diabetes was present in 22 (88.0%). CONCLUSIONS: We build on the knowledge of the natural history and pancreatic and extra-pancreatic phenotypes of HNF4A/HNF1Amutations and illustrate the heterogeneity of this condition.


Subject(s)
Genetic Heterogeneity , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 4/genetics , Hyperinsulinism/genetics , Hypoglycemia/genetics , Mutation , Adolescent , Birth Weight , Child , Child, Preschool , Cohort Studies , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Diazoxide/therapeutic use , Fanconi Syndrome/genetics , Female , Humans , Hyperinsulinism/drug therapy , Hypoglycemia/drug therapy , Infant , Infant, Newborn , Male , Medical History Taking
12.
Diabetologia ; 65(2): 336-342, 2022 02.
Article in English | MEDLINE | ID: mdl-34686905

ABSTRACT

AIMS/HYPOTHESIS: Current clinical guidelines for childhood-onset monogenic diabetes outside infancy are mainly focused on identifying and testing for dominantly inherited, predominantly MODY genes. There are no systematic studies of the recessively inherited causes of monogenic diabetes that are likely to be more common in populations with high rates of consanguinity. We aimed to determine the contribution of recessive causes of monogenic diabetes in paediatric diabetes clinics and to identify clinical criteria by which to select individuals for recessive monogenic diabetes testing. METHODS: We conducted a cross-sectional study of 1093 children from seven paediatric diabetes clinics across Turkey (a population with high rates of consanguinity). We undertook genetic testing of 50 known dominant and recessive causes of monogenic diabetes for 236 children at low risk of type 1 diabetes. As a comparison, we used monogenic diabetes cases from UK paediatric diabetes clinics (a population with low rates of consanguinity). RESULTS: Thirty-four children in the Turkish cohort had monogenic diabetes, equating to a minimal prevalence of 3.1%, similar to that in the UK cohort (p = 0.40). Forty-one per cent (14/34) had autosomal recessive causes in contrast to 1.6% (2/122) in the UK monogenic diabetes cohort (p < 0.0001). All conventional criteria for identifying monogenic diabetes (parental diabetes, not requiring insulin treatment, HbA1c ≤ 58 mmol/mol [≤7.5%] and a composite clinical probability of MODY >10%) assisted the identification of the dominant (all p ≤ 0.0003) but not recessive cases (all p ≥ 0.2) in Turkey. The presence of certain non-autoimmune extra-pancreatic features greatly assisted the identification of recessive (p < 0.0001, OR 66.9) but not dominant cases. CONCLUSIONS/INTERPRETATION: Recessively inherited mutations are a common cause of monogenic diabetes in populations with high rates of consanguinity. Present MODY-focused genetic testing strategies do not identify affected individuals. To detect all cases of monogenic paediatric diabetes, it is crucial that recessive genes are included in genetic panels and that children are selected for testing if they have certain non-autoimmune extra-pancreatic features in addition to current criteria.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genetic Testing , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Female , High-Throughput Nucleotide Sequencing , Hospitals, Pediatric , Humans , Infant , Male , Risk Assessment , Turkey/epidemiology , United Kingdom/epidemiology , Young Adult
13.
Pediatr Endocrinol Diabetes Metab ; 27(4): 287-290, 2021.
Article in English | MEDLINE | ID: mdl-34928108

ABSTRACT

BACKGROUND: Wolcott-Rallison syndrome (WRS) is a rare autosomal recessive disorder characterized by neonatal diabetes mellitus (NDM), epiphyseal dysplasia, and hepatic and renal dysfunction. Although neuro-psychological features are common in patients with WRS, malformations of cortical development (MCDs) are rarely reported. CASE PRESENTATION: A 3-month-old boy, born to non-consanguineous parents, presented with right focal seizures since two months of age and recently detected diabetes mellitus. He also had a small head and lissencephaly-pachygyria spectrum on brain imaging. Genetic testing confirmed the diagnosis of WRS by identifying a biallelic homozygous deletion of exon 1 in the EIF2AK3 gene. The child achieved reasonable glycemic control on the basal-bolus insulin regimen. CONCLUSIONS: Presentation of WRS may occur with neurological manifestations such as lissencephaly-pachygyria spectrum. Early confirmation of the genetic diagnosis of WRS by screening for pathogenic variants in the EIF2AK3 gene is important in children with NDM and associated syndromic features. Establishing the diagnosis of WRS helps in predicting the development of subsequent clinical features, guides management, and may improve patient outcomes.


Subject(s)
Diabetes Mellitus, Type 1 , Epiphyses , Lissencephaly , Osteochondrodysplasias , eIF-2 Kinase , Diabetes Mellitus, Type 1/genetics , Epiphyses/abnormalities , Exons , Homozygote , Humans , Infant , Lissencephaly/genetics , Male , Mutation , Osteochondrodysplasias/genetics , Sequence Deletion , eIF-2 Kinase/genetics
14.
Eur J Endocrinol ; 185(6): 813-818, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34633981

ABSTRACT

OBJECTIVE: Mutations in the KATP channel genes, ABCC8 and KCNJ11, are the most common cause of congenital hyperinsulinism. The diagnosis of KATP-hyperinsulinism is important for the clinical management of the condition. We aimed to determine the clinical features that help to identify KATP-hyperinsulinism at diagnosis. DESIGN: We studied 761 individuals with KATP-hyperinsulinism and 862 probands with hyperinsulinism of unknown aetiology diagnosed before 6 months of age. All were referred as part of routine clinical care. METHODS: We compared the clinical features of KATP-hyperinsulinism and unknown hyperinsulinism cases. We performed logistic regression and receiver operator characteristic (ROC) analysis to identify the features that predict KATP-hyperinsulinism. RESULTS: Higher birth weight, diazoxide unresponsiveness and diagnosis in the first week of life were independently associated with KATP-hyperinsulinism (adjusted odds ratio: 4.5 (95% CI: 3.4-5.9), 0.09 (0.06-0.13) and 3.3 (2.0-5.0) respectively). Birth weight and diazoxide unresponsiveness were additive and highly discriminatory for identifying KATP-hyperinsulinism (ROC area under the curve for birth weight 0.80, diazoxide responsiveness 0.77, and together 0.88, 95% CI: 0.85-0.90). In this study, 86% born large for gestation and 78% born appropriate for gestation and who did not respond to diazoxide treatment had KATP-hyperinsulinism. In contrast, of those individuals born small for gestation, none who were diazoxide responsive and only 4% of those who were diazoxide unresponsive had KATP-hyperinsulinism. CONCLUSIONS: Individuals with hyperinsulinism born appropriate or large for gestation and unresponsive to diazoxide treatment are most likely to have an ABCC8 or KCNJ11 mutation. These patients should be prioritised for genetic testing of KATP channel genes.


Subject(s)
Birth Weight , Congenital Hyperinsulinism/genetics , Diazoxide/administration & dosage , KATP Channels/genetics , Mutation , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Congenital Hyperinsulinism/diagnosis , Female , Humans , Infant, Newborn , Male
15.
Front Endocrinol (Lausanne) ; 12: 727083, 2021.
Article in English | MEDLINE | ID: mdl-34566892

ABSTRACT

Background: Neonatal diabetes mellitus (NDM) is defined as insulin-requiring persistent hyperglycemia occurring within the first 6 months of life, which can result from mutations in at least 25 different genes. Activating heterozygous mutations in genes encoding either of the subunits of the ATP-sensitive K+ channel (KATP channel; KCNJ11 or ABCC8) of the pancreatic beta cell are the most common cause of permanent NDM and the second most common cause of transient NDM. Patients with NDM caused by KATP channel mutations are sensitive to sulfonylurea (SU) treatment; therefore, their clinical management can be improved by replacing insulin with oral agents. Patients and Methods: Seventy patients were diagnosed with NDM between May 2008 and May 2021 at Vietnam National Children's Hospital, and molecular genetic testing for all genes known to cause NDM was performed at the Exeter Genomic Laboratory, UK. Patients with ABCC8 or KCNJ11 mutations were transferred from insulin to oral SU. Clinical characteristics, molecular genetics, and annual data relating to glycemic control, SU dose, severe hypoglycemia, and side effects were collected. The main outcomes of interest were SU dose, SU failure (defined as permanent reintroduction of daily insulin), and glycemic control (HbA1c). Results: Fifty-four of 70 patients (77%) with NDM harbored a genetic mutation and of these; 27 (50%) had activating heterozygous mutations in ABCC8 or KCNJ11. A total of 21 pathogenic mutations were identified in the 27 patients, including 13 mutations in ABCC8 and 8 mutations in KCNJ11. Overall, 51% had low birth weight (below 3rd percentile), 23 (85%) were diagnosed before 3 months of age, and 23 (85%) presented with diabetic ketoacidosis. At diagnosis, clinical and biochemical findings (mean ± SD) were pH 7.16 ± 0.16; HCO3- , 7.9 ± 7.4 mmol/L; BE, -17.9 ± 9.1 mmol/L; HbA1C, 7.98% ± 2.93%; blood glucose, 36.2 ± 12.3 mmol/L; and C-peptide median, 0.09 (range, 0-1.61 nmol/l). Twenty-six patients were successfully transferred from insulin to SU therapy. In the remaining case, remission of diabetes occurred prior to transfer. Glycemic control on SU treatment was better than on insulin treatment: HbA1c and blood glucose level decreased from 7.58% ± 4.63% and 19.04 ± 14.09 mmol/L when treated with insulin to 5.8 ± 0.94% and 6.87 ± 3.46 mmol/L when treated with SU, respectively. Conclusions: This is the first case series of NDM patients with ABCC8/KCNJ11 mutations reported in Vietnam. SU is safe in the short term for these patients and more effective than insulin therapy, consistent with all studies to date. This is relevant for populations where access to and cost of insulin are problematic, reinforcing the importance of genetic testing for NDM.


Subject(s)
Diabetes Mellitus , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Female , Genetic Testing , Hospitals, Pediatric , Humans , Hypoglycemic Agents/therapeutic use , Infant , Infant, Newborn , Infant, Newborn, Diseases/drug therapy , Infant, Newborn, Diseases/genetics , Infant, Newborn, Diseases/pathology , KATP Channels/genetics , Male , Molecular Diagnostic Techniques , Mutation , Phenotype , Prognosis , Sulfonylurea Compounds/therapeutic use , Treatment Outcome , Vietnam
16.
Front Endocrinol (Lausanne) ; 12: 665336, 2021.
Article in English | MEDLINE | ID: mdl-33935973

ABSTRACT

Background: Neonatal diabetes with congenital hypothyroidism (NDH) syndrome is a rare condition caused by homozygous or compound heterozygous mutations in the GLI-similar 3 coding gene GLIS3. Almost 20 patients have been reported to date, with significant phenotypic variability. Case presentation: We describe a boy with a homozygous deletion (exons 5-9) in the GLIS3 gene, who presents novel clinical aspects not reported previously. In addition to neonatal diabetes, congenital hypothyroidism and other known multi-organ manifestations such as cholestasis and renal cysts, he suffered from hyporegenerative anemia during the first four months of life and presents megalocornea in the absence of elevated intraocular pressure. Compensation of partial exocrine pancreatic insufficiency and deficiencies in antioxidative vitamins seemed to have exerted marked beneficial impact on several disease symptoms including cholestasis and TSH resistance, although a causal relation is difficult to prove. Considering reports on persistent fetal hemoglobin detected in a few children with GLIS3 mutations, the transient anemia seen in our patient may represent a further symptom associated with either the GLIS3 defect itself or, secondarily, micronutrient deficiency related to exocrine pancreatic deficiency or cholestasis. Conclusions: Our report expands the phenotypic spectrum of patients with GLIS3 mutations and adds important information on the clinical course, highlighting the possible beneficial effects of pancreatic enzyme and antioxidative vitamin substitutions on characteristic NDH syndrome manifestations such as TSH resistance and cholestasis. We recommend to carefully screen infants with GLIS3 mutations for subtle biochemical signs of partial exocrine pancreatic deficiency or to discuss exploratory administration of pancreatic enzymes and antioxidative vitamins, even in case of good weight gain and fecal elastase concentrations in the low-to-normal range.


Subject(s)
Congenital Hypothyroidism/pathology , DNA-Binding Proteins/genetics , Diabetes Mellitus/pathology , Mutation , Phenotype , Repressor Proteins/genetics , Trans-Activators/genetics , Congenital Hypothyroidism/genetics , Diabetes Mellitus/genetics , Humans , Infant , Male , Prognosis
17.
Clin Case Rep ; 8(7): 1217-1222, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32695361

ABSTRACT

Advances in genomics and 18F-DOPA PET-CT imaging have transformed the management of infants with Congenital Hyperinsulinism. Preoperative diagnosis of focal hyperinsulinism permits limited pancreatectomy with improved clinical outcomes while knowledge of the molecular etiology informs genetic counseling and provides a more accurate recurrence risk to families.

18.
Clin Chem ; 66(7): 958-965, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32533152

ABSTRACT

BACKGROUND: Babies of women with heterozygous pathogenic glucokinase (GCK) variants causing mild fasting hyperglycemia are at risk of macrosomia if they do not inherit the variant. Conversely, babies who inherit a pathogenic hepatocyte nuclear factor 4α (HNF4A) diabetes variant are at increased risk of high birth weight. Noninvasive fetal genotyping for maternal pathogenic variants would inform pregnancy management. METHODS: Droplet digital PCR was used to quantify reference and variant alleles in cell-free DNA extracted from blood from 38 pregnant women heterozygous for a GCK or HNF4A variant and to determine fetal fraction by measurement of informative maternal and paternal variants. Droplet numbers positive for the reference/alternate allele together with the fetal fraction were used in a Bayesian analysis to derive probability for the fetal genotype. The babies' genotypes were ascertained postnatally by Sanger sequencing. RESULTS: Droplet digital PCR assays for GCK or HNF4A variants were validated for testing in all 38 pregnancies. Fetal fraction of ≥2% was demonstrated in at least 1 cell-free DNA sample from 33 pregnancies. A threshold of ≥0.95 for calling homozygous reference genotypes and ≤0.05 for heterozygous fetal genotypes allowed correct genotype calls for all 33 pregnancies with no false-positive results. In 30 of 33 pregnancies, a result was obtained from a single blood sample. CONCLUSIONS: This assay can be used to identify pregnancies at risk of macrosomia due to maternal monogenic diabetes variants.


Subject(s)
DNA/blood , Diabetes Mellitus/genetics , Maternal Inheritance , Prenatal Diagnosis/methods , Biomarkers/blood , Diabetes Mellitus/enzymology , Female , Fetal Macrosomia/diagnosis , Fetal Macrosomia/genetics , Fetus , Genotype , Genotyping Techniques/methods , Genotyping Techniques/statistics & numerical data , Glucokinase/genetics , Hepatocyte Nuclear Factor 4/genetics , Humans , Male , Markov Chains , Monte Carlo Method , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/statistics & numerical data , Pregnancy
19.
J Pediatr Endocrinol Metab ; 33(5): 671-674, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32267248

ABSTRACT

Background Congenital hyperinsulinism (CHI), a condition characterized by dysregulation of insulin secretion from the pancreatic ß cells, remains one of the most common causes of hyperinsulinemic, hypoketotic hypoglycemia in the newborn period. Mutations in ABCC8 and KCNJ11 constitute the majority of genetic forms of CHI. Case presentation A term macrosomic male baby, birth weight 4.81 kg, born to non-consanguineous parents, presented on day 1 of life with severe and persistent hypoglycemia. The biochemical investigations confirmed a diagnosis of CHI. Diazoxide was started and progressively increased to 15 mg/kg/day to maintain normoglycemia. Sequence analysis identified compound heterozygous mutations in ABCC8 c.4076C>T and c.4119+1G>A inherited from the unaffected father and mother, respectively. The mutations are reported pathogenic. The patient is currently 7 months old with a sustained response to diazoxide. Conclusions Biallelic ABCC8 mutations are known to result in severe, diffuse, diazoxide-unresponsive hypoglycemia. We report a rare patient with CHI due to compound heterozygous mutations in ABCC8 responsive to diazoxide.


Subject(s)
Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Diazoxide/therapeutic use , Sulfonylurea Receptors/genetics , Vasodilator Agents/therapeutic use , Humans , Infant, Newborn , Male , Treatment Outcome
20.
Rev Endocr Metab Disord ; 21(4): 577-597, 2020 12.
Article in English | MEDLINE | ID: mdl-32185602

ABSTRACT

Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.


Subject(s)
Congenital Hyperinsulinism/diagnosis , Congenital Hyperinsulinism/therapy , Adolescent , Child , Child, Preschool , Congenital Hyperinsulinism/genetics , Congenital Hyperinsulinism/metabolism , Humans , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...